Summary Shapley Explainer Demo
This example demonstrates how to interpret a scikit-learn model using the H2O Eval Studio library and retrieve the data and plot the summary Shapley.
[36]:
import logging
import pandas
import webbrowser
from h2o_sonar import interpret
from h2o_sonar.lib.api import commons
from h2o_sonar.lib.api import explainers
from h2o_sonar.lib.api.models import ModelApi
from h2o_sonar.explainers.summary_shap_explainer import SummaryShapleyExplainer
from sklearn.ensemble import GradientBoostingClassifier
[37]:
results_location = "../../results"
# dataset
dataset_path = "../../data/creditcard.csv"
target_col = "default payment next month"
df = pandas.read_csv(dataset_path)
(X, y) = df.drop(target_col, axis=1), df[target_col]
[38]:
# parameters
interpret.describe_explainer(SummaryShapleyExplainer)
[38]:
{'id': 'h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer',
'name': 'SummaryShapleyExplainer',
'display_name': 'Shapley Summary Plot for Original Features (Kernel SHAP Method)',
'description': 'Shapley explanations are a technique with credible theoretical support that presents consistent global and local feature contributions.\n\nThe Shapley Summary Plot shows original features versus their local Shapley values on a sample of the dataset. Feature values are binned by Shapley values and the average normalized feature value for each bin is plotted. The legend corresponds to numeric features and maps to their normalized value - yellow is the lowest value and deep orange is the highest. You can also get a scatter plot of the actual numeric features values versus their corresponding Shapley values. Categorical features are shown in grey and do not provide an actual-value scatter plot.\n\nNotes:\n\n* The Shapley Summary Plot only shows original features that are used in the model.\n* The dataset sample size and the number of bins can be updated in the interpretation settings.\n\n',
'model_types': ['iid', 'time_series'],
'can_explain': ['regression', 'binomial', 'multinomial'],
'explanation_scopes': ['global_scope'],
'explanations': [{'explanation_type': 'global-summary-feature-importance',
'name': 'GlobalSummaryFeatImpExplanation',
'category': None,
'scope': 'global',
'has_local': None,
'formats': []}],
'parameters': [{'name': 'max_features',
'description': 'Maximum number of features to be shown in the plot.',
'comment': '',
'type': 'int',
'val': 50,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'sample_size',
'description': 'Sample size.',
'comment': '',
'type': 'int',
'val': 20000,
'predefined': [],
'tags': [],
'min_': 100.0,
'max_': 0.0,
'category': ''},
{'name': 'x_shapley_resolution',
'description': 'x-axis resolution (number of Shapley values bins).',
'comment': '',
'type': 'int',
'val': 500,
'predefined': [],
'tags': [],
'min_': 100.0,
'max_': 0.0,
'category': ''},
{'name': 'enable_drilldown_charts',
'description': 'Enable creation of per-feature Shapley/feature value scatter plots.',
'comment': '',
'type': 'bool',
'val': True,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'fast_approx_contribs',
'description': 'Speed up predictions with fast predictions and contributions approximations.',
'comment': '',
'type': 'bool',
'val': True,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''}],
'keywords': ['run-by-default', 'explains-feature-behavior', 'h2o-sonar']}
Interpretation
[39]:
# scikit-learn model
gradient_booster = GradientBoostingClassifier(learning_rate=0.1)
gradient_booster.fit(X, y)
# explainable model
explainable_model = ModelApi().create_model(
target_col=target_col,
model_src=gradient_booster,
used_features=X.columns.to_list()
)
interpretation = interpret.run_interpretation(
dataset=df,
model=explainable_model,
target_col=target_col,
results_location=results_location,
log_level=logging.INFO,
explainers=[
commons.ExplainerToRun(
explainer_id=SummaryShapleyExplainer.explainer_id(),
params="",
)
]
)
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 30.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 40.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
<Figure size 640x480 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>


Interact with the Explainer Result
[40]:
# retrieve the result
result = interpretation.get_explainer_result(SummaryShapleyExplainer.explainer_id())
[41]:
# open interpretation HTML report in web browser
webbrowser.open(interpretation.result.get_html_report_location())
[41]:
True
[42]:
# summary
result.summary()
[42]:
{'id': 'h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer',
'name': 'SummaryShapleyExplainer',
'display_name': 'Shapley Summary Plot for Original Features (Kernel SHAP Method)',
'description': 'Shapley explanations are a technique with credible theoretical support that presents consistent global and local feature contributions.\n\nThe Shapley Summary Plot shows original features versus their local Shapley values on a sample of the dataset. Feature values are binned by Shapley values and the average normalized feature value for each bin is plotted. The legend corresponds to numeric features and maps to their normalized value - yellow is the lowest value and deep orange is the highest. You can also get a scatter plot of the actual numeric features values versus their corresponding Shapley values. Categorical features are shown in grey and do not provide an actual-value scatter plot.\n\nNotes:\n\n* The Shapley Summary Plot only shows original features that are used in the model.\n* The dataset sample size and the number of bins can be updated in the interpretation settings.\n\n',
'model_types': ['iid', 'time_series'],
'can_explain': ['regression', 'binomial', 'multinomial'],
'explanation_scopes': ['global_scope'],
'explanations': [{'explanation_type': 'global-summary-feature-importance',
'name': 'Shapley Summary Plot for Original Features',
'category': 'DAI MODEL',
'scope': 'global',
'has_local': None,
'formats': ['application/vnd.h2oai.json+datatable.jay',
'application/json',
'text/markdown']},
{'explanation_type': 'global-html-fragment',
'name': 'Shapley Summary Plot for Original Features',
'category': 'DAI MODEL',
'scope': 'global',
'has_local': None,
'formats': ['text/html']}],
'parameters': [{'name': 'max_features',
'description': 'Maximum number of features to be shown in the plot.',
'comment': '',
'type': 'int',
'val': 50,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'sample_size',
'description': 'Sample size.',
'comment': '',
'type': 'int',
'val': 20000,
'predefined': [],
'tags': [],
'min_': 100.0,
'max_': 0.0,
'category': ''},
{'name': 'x_shapley_resolution',
'description': 'x-axis resolution (number of Shapley values bins).',
'comment': '',
'type': 'int',
'val': 500,
'predefined': [],
'tags': [],
'min_': 100.0,
'max_': 0.0,
'category': ''},
{'name': 'enable_drilldown_charts',
'description': 'Enable creation of per-feature Shapley/feature value scatter plots.',
'comment': '',
'type': 'bool',
'val': True,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'fast_approx_contribs',
'description': 'Speed up predictions with fast predictions and contributions approximations.',
'comment': '',
'type': 'bool',
'val': True,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''}],
'keywords': ['run-by-default', 'explains-feature-behavior', 'h2o-sonar']}
[43]:
# parameters
result.params()
[43]:
{'max_features': 50,
'sample_size': 20000,
'x_shapley_resolution': 500,
'enable_drilldown_charts': True,
'fast_approx_contribs': True}
Display the Shapley Shapley
[44]:
# get the data for all features
result.data()
[44]:
EDUCATION | PAY_AMT6 | BILL_AMT4 | BILL_AMT2 | PAY_6 | PAY_AMT4 | PAY_4 | PAY_2 | SEX | BILL_AMT5 | … | PAY_3 | BILL_AMT6 | PAY_AMT5 | PAY_AMT3 | bias | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ||
0 | 1.65226 | −0.0547901 | 0.150492 | 0.134808 | 0.226829 | 0.00125426 | 0.0449024 | 0.00238772 | 0.187654 | −0.0959281 | … | −0.00967008 | −0.0261544 | 0.0146957 | −0.00275057 | −1.44588 |
1 | 2.16981 | 0.842996 | 0.0470875 | 0.27856 | 0.0741961 | 0.166403 | 0.105538 | 0.0985959 | 0.216323 | −0.131341 | … | 0.0249515 | −0.019708 | 0.00715476 | −0.00256468 | −1.44588 |
2 | 2.12466 | 0.843833 | −0.289847 | 0.269464 | 0.160889 | 0.192103 | 0.100056 | 0.126934 | 0.241557 | −0.0778495 | … | 0.0249515 | −0.0227436 | 0.0014148 | −0.00256468 | −1.44588 |
3 | 2.15757 | 1.21747 | −0.272014 | 0.269464 | 0.165747 | 0.213582 | 0.116887 | 0.0969255 | 0.241634 | −0.0753099 | … | 0.0425086 | −0.00694019 | 0.0015317 | −0.00249899 | −1.44588 |
4 | 2.15769 | 1.19659 | −0.26204 | 0.397632 | 0.128483 | 0.213582 | 0.114694 | 0.139666 | −0.0189303 | −0.0839664 | … | 0.0428385 | −0.0209929 | 0.0015317 | −0.00536187 | −1.44588 |
5 | 2.12337 | 0.803398 | −0.323941 | 0.395243 | 0.122176 | 0.20966 | 0.117744 | 0.142187 | −0.0196402 | −0.082045 | … | 0.0264219 | −0.0209929 | 0.0014148 | −0.00249899 | −1.44588 |
6 | 2.11738 | 0.869668 | −0.202473 | 0.425458 | 0.143573 | 0.241304 | 0.929566 | 0.0509855 | −0.0157354 | 1.11738 | … | −0.0244857 | 0.329203 | −0.0336277 | −0.0489256 | −1.44588 |
7 | 2.29337 | 0.843833 | 0.137766 | 0.40434 | 0.108064 | 0.15845 | 0.0577676 | 0.160095 | 0.224786 | −0.222855 | … | 0.0256973 | −0.0206995 | 0.000932374 | −0.00256468 | −1.44588 |
8 | 0.721334 | 1.2513 | −0.232532 | 0.283048 | 0.124477 | 0.377512 | 0.0948348 | 0.136291 | 0.253118 | 0.00189682 | … | 0.0259171 | −0.0212313 | −0.00136092 | −0.00256468 | −1.44588 |
9 | 0.695114 | −0.0325233 | 0.155455 | 0.0648207 | 0.206569 | 0.418804 | 0.146897 | 0.0309622 | −0.018181 | 0.008212 | … | −0.00483971 | −0.0162397 | −0.00193152 | 0.00982893 | −1.44588 |
10 | 0.628532 | 0.858106 | 0.159085 | 0.40434 | 0.128572 | 0.365036 | 0.115937 | 0.155209 | 0.253604 | −0.0474775 | … | 0.0083599 | −0.0191873 | 0.00496686 | −0.00256468 | −1.44588 |
11 | 2.17393 | 0.920577 | −0.289756 | 0.280939 | 0.0798639 | 0.193013 | 0.116661 | 0.201823 | 0.201997 | −0.0952989 | … | 0.0426569 | −0.0199261 | 0.00576327 | 0.0389418 | −1.44588 |
12 | 2.0534 | −0.0557249 | −0.290296 | 0.135218 | 0.223741 | 0.287164 | 0.130835 | 0.0160061 | 0.187147 | −0.130139 | … | 0.00207622 | −0.0232749 | 0.00402559 | −0.00561346 | −1.44588 |
13 | 2.16171 | −0.0471414 | −0.391199 | 0.0139368 | 0.129913 | 0.36661 | 0.141725 | −0.0622346 | −0.0194784 | −0.0715587 | … | −0.00375071 | 0.00115651 | −0.00147781 | −0.0048881 | −1.44588 |
14 | 2.119 | 0.807198 | −0.373689 | 0.271853 | 0.154495 | 0.255991 | 0.125642 | 0.0990493 | −0.020883 | −0.0715587 | … | 0.0238109 | 0.000934643 | 0.00496686 | −0.0048881 | −1.44588 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋱ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
9995 | 1.71777 | 0.920241 | 0.171137 | 0.120535 | 0.192333 | 0.00637931 | 0.0120422 | 0.128605 | 0.23573 | −0.258765 | … | 0.0101926 | −0.0467804 | 0.00943316 | −0.000446296 | −1.44588 |
9996 | 1.85219 | −0.0368325 | 0.169884 | 0.0670442 | 0.258013 | 0.00548635 | 0.3088 | 0.010371 | 0.18666 | −0.239416 | … | −0.00949212 | −0.0235576 | 0.00950957 | 0.00752465 | −1.44588 |
9997 | 0.524547 | 1.20039 | −0.381407 | 0.285096 | 0.242793 | 0.423518 | 0.416065 | 0.0728544 | −0.0208686 | 0.655805 | … | 0.0545522 | 0.0371469 | −0.0371309 | −0.00533337 | −1.44588 |
9998 | 1.70712 | −0.0543696 | 0.171208 | 0.0199256 | 0.253793 | 0.00537059 | 0.0360739 | 0.010371 | 0.18651 | −0.258171 | … | −0.0185096 | −0.0263928 | 0.00943316 | −0.00275057 | −1.44588 |
9999 | 2.16211 | 1.23041 | −0.272231 | 0.271051 | 0.234345 | 0.177503 | 0.0905104 | 0.136922 | −0.020883 | −0.0795533 | … | 0.041368 | −0.0209929 | 0.00283075 | −0.0048881 | −1.44588 |
[45]:
# get the data for only feature "PAY_0"
result.data(feature_names="PAY_0")
[45]:
PAY_0 | bias | |
---|---|---|
▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | |
0 | −0.0285793 | −1.44588 |
1 | −0.0316909 | −1.44588 |
2 | −0.0264079 | −1.44588 |
3 | −0.0264079 | −1.44588 |
4 | 0.16752 | −1.44588 |
5 | 0.16752 | −1.44588 |
6 | 0.16752 | −1.44588 |
7 | 0.157119 | −1.44588 |
8 | 0.295939 | −1.44588 |
9 | 0.155822 | −1.44588 |
10 | 0.281417 | −1.44588 |
11 | −0.0316909 | −1.44588 |
12 | −0.0264079 | −1.44588 |
13 | −0.0285916 | −1.44588 |
14 | −0.0233086 | −1.44588 |
⋮ | ⋮ | ⋮ |
9995 | −0.0285793 | −1.44588 |
9996 | −0.0131348 | −1.44588 |
9997 | −0.0391121 | −1.44588 |
9998 | −0.0285793 | −1.44588 |
9999 | −0.0233086 | −1.44588 |
[46]:
# get the data for "PAY_0", "AGE and "EDUCATION"
result.data(feature_names=["PAY_0", "AGE", "EDUCATION"])
[46]:
PAY_0 | AGE | EDUCATION | bias | |
---|---|---|---|---|
▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | |
0 | −0.0285793 | −0.0674194 | 1.65226 | −1.44588 |
1 | −0.0316909 | −0.034543 | 2.16981 | −1.44588 |
2 | −0.0264079 | −0.0191444 | 2.12466 | −1.44588 |
3 | −0.0264079 | −0.0162212 | 2.15757 | −1.44588 |
4 | 0.16752 | −0.0191444 | 2.15769 | −1.44588 |
5 | 0.16752 | −0.0191444 | 2.12337 | −1.44588 |
6 | 0.16752 | −0.0373351 | 2.11738 | −1.44588 |
7 | 0.157119 | −0.0120855 | 2.29337 | −1.44588 |
8 | 0.295939 | −0.0220456 | 0.721334 | −1.44588 |
9 | 0.155822 | −0.0213968 | 0.695114 | −1.44588 |
10 | 0.281417 | −0.0374621 | 0.628532 | −1.44588 |
11 | −0.0316909 | −0.0294682 | 2.17393 | −1.44588 |
12 | −0.0264079 | −0.0255851 | 2.0534 | −1.44588 |
13 | −0.0285916 | −0.0191225 | 2.16171 | −1.44588 |
14 | −0.0233086 | −0.0162212 | 2.119 | −1.44588 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
9995 | −0.0285793 | −0.0864621 | 1.71777 | −1.44588 |
9996 | −0.0131348 | −0.0758396 | 1.85219 | −1.44588 |
9997 | −0.0391121 | −0.0391957 | 0.524547 | −1.44588 |
9998 | −0.0285793 | −0.0864621 | 1.70712 | −1.44588 |
9999 | −0.0233086 | −0.0191444 | 2.16211 | −1.44588 |
Plot the Summary Shapley
[47]:
# plot summary shap for all features
result.plot()
invalid value encountered in divide

[48]:
# plot summary shap for "PAY_0", "AGE and "EDUCATION"
result.plot(feature_names=["PAY_0", "AGE", "EDUCATION"])
invalid value encountered in divide

Save the explainer log and data
[49]:
# save the explainer log
result.log(path="./summary-shapley-demo.log")
[50]:
!head summary-shapley-demo.log
2023-03-13 00:10:38,853 INFO Summary Shapley explainer a38d3c78-087a-49c4-94cd-837e4f6bb08e/513ca372-eb5d-41df-8689-3585a7c3e547 raw MEANs (1)
2023-03-13 00:10:38,854 INFO Summary Shapley explainer a38d3c78-087a-49c4-94cd-837e4f6bb08e/513ca372-eb5d-41df-8689-3585a7c3e547 raw CONTRIBs (1)
[51]:
# save the explainer data
result.zip(file_path="./summary-shapley-demo-archive.zip")
[52]:
!unzip -l summary-shapley-demo-archive.zip
Archive: summary-shapley-demo-archive.zip
Length Date Time Name
--------- ---------- ----- ----
4013 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/result_descriptor.json
627902 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/work/shapley-class-0.png
2002376 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/work/raw_shapley_contribs_class_0.jay
1091 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/work/raw_shapley_contribs_index.json
141 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/work/report.md
110 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html.meta
627902 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/shapley-class-0.png
86557 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_9_class_0.png
201678 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_17_class_0.png
83915 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_15_class_0.png
57051 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_21_class_0.png
149653 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_18_class_0.png
92514 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_12_class_0.png
42226 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_8_class_0.png
75786 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_14_class_0.png
103574 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_20_class_0.png
98522 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_6_class_0.png
83694 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_4_class_0.png
8603 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/explanation.html
70706 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_10_class_0.png
55822 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_23_class_0.png
249212 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_16_class_0.png
196410 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_19_class_0.png
66859 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_13_class_0.png
131318 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_1_class_0.png
77100 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_0_class_0.png
76801 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_22_class_0.png
173293 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_3_class_0.png
110416 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_5_class_0.png
82248 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_11_class_0.png
108348 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_2_class_0.png
100218 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_7_class_0.png
157 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json.meta
122 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/text_markdown.meta
199 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_vnd_h2oai_json_datatable_jay.meta
419600 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_vnd_h2oai_json_datatable_jay/summary_feature_importance_class_0.jay
1191 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_vnd_h2oai_json_datatable_jay/explanation.json
818502 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/summary_feature_importance_class_0_offset_1.json
86557 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_9_class_0.png
201678 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_17_class_0.png
83915 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_15_class_0.png
57051 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_21_class_0.png
149653 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_18_class_0.png
92514 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_12_class_0.png
327225 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/summary_feature_importance_class_0_offset_2.json
42226 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_8_class_0.png
75786 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_14_class_0.png
103574 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_20_class_0.png
98522 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_6_class_0.png
826501 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/summary_feature_importance_class_0_offset_0.json
83694 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_4_class_0.png
70706 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_10_class_0.png
55822 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_23_class_0.png
249212 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_16_class_0.png
2629 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/explanation.json
196410 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_19_class_0.png
66859 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_13_class_0.png
131318 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_1_class_0.png
77100 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_0_class_0.png
76801 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_22_class_0.png
173293 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_3_class_0.png
110416 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_5_class_0.png
82248 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_11_class_0.png
108348 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_2_class_0.png
100218 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_7_class_0.png
627902 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/text_markdown/shapley-class-0.png
141 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/text_markdown/explanation.md
2 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/model_problems/problems_and_actions.json
289 2023-03-13 00:10 explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/log/explainer_run_513ca372-eb5d-41df-8689-3585a7c3e547.log
--------- -------
11444440 69 files
[ ]: