Summary Shapley Explainer Demo

This example demonstrates how to interpret a scikit-learn model using the H2O Eval Studio library and retrieve the data and plot the summary Shapley.

[36]:
import logging

import pandas
import webbrowser

from h2o_sonar import interpret
from h2o_sonar.lib.api import commons
from h2o_sonar.lib.api import explainers
from h2o_sonar.lib.api.models import ModelApi
from h2o_sonar.explainers.summary_shap_explainer import SummaryShapleyExplainer

from sklearn.ensemble import GradientBoostingClassifier
[37]:
results_location = "../../results"

# dataset
dataset_path = "../../data/creditcard.csv"
target_col = "default payment next month"
df = pandas.read_csv(dataset_path)
(X, y) = df.drop(target_col, axis=1), df[target_col]
[38]:
# parameters
interpret.describe_explainer(SummaryShapleyExplainer)
[38]:
{'id': 'h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer',
 'name': 'SummaryShapleyExplainer',
 'display_name': 'Shapley Summary Plot for Original Features (Kernel SHAP Method)',
 'description': 'Shapley explanations are a technique with credible theoretical support that presents consistent global and local feature contributions.\n\nThe Shapley Summary Plot shows original features versus their local Shapley values on a sample of the dataset. Feature values are binned by Shapley values and the average normalized feature value for each bin is plotted. The legend corresponds to numeric features and maps to their normalized value - yellow is the lowest value and deep orange is the highest. You can also get a scatter plot of the actual numeric features values versus their corresponding Shapley values. Categorical features are shown in grey and do not provide an actual-value scatter plot.\n\nNotes:\n\n* The Shapley Summary Plot only shows original features that are used in the model.\n* The dataset sample size and the number of bins can be updated in the interpretation settings.\n\n',
 'model_types': ['iid', 'time_series'],
 'can_explain': ['regression', 'binomial', 'multinomial'],
 'explanation_scopes': ['global_scope'],
 'explanations': [{'explanation_type': 'global-summary-feature-importance',
   'name': 'GlobalSummaryFeatImpExplanation',
   'category': None,
   'scope': 'global',
   'has_local': None,
   'formats': []}],
 'parameters': [{'name': 'max_features',
   'description': 'Maximum number of features to be shown in the plot.',
   'comment': '',
   'type': 'int',
   'val': 50,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'sample_size',
   'description': 'Sample size.',
   'comment': '',
   'type': 'int',
   'val': 20000,
   'predefined': [],
   'tags': [],
   'min_': 100.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'x_shapley_resolution',
   'description': 'x-axis resolution (number of Shapley values bins).',
   'comment': '',
   'type': 'int',
   'val': 500,
   'predefined': [],
   'tags': [],
   'min_': 100.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'enable_drilldown_charts',
   'description': 'Enable creation of per-feature Shapley/feature value scatter plots.',
   'comment': '',
   'type': 'bool',
   'val': True,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'fast_approx_contribs',
   'description': 'Speed up predictions with fast predictions and contributions approximations.',
   'comment': '',
   'type': 'bool',
   'val': True,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''}],
 'keywords': ['run-by-default', 'explains-feature-behavior', 'h2o-sonar']}

Interpretation

[39]:
# scikit-learn model
gradient_booster = GradientBoostingClassifier(learning_rate=0.1)
gradient_booster.fit(X, y)

# explainable model
explainable_model = ModelApi().create_model(
    target_col=target_col,
    model_src=gradient_booster,
    used_features=X.columns.to_list()
)

interpretation = interpret.run_interpretation(
    dataset=df,
    model=explainable_model,
    target_col=target_col,
    results_location=results_location,
    log_level=logging.INFO,
    explainers=[
        commons.ExplainerToRun(
            explainer_id=SummaryShapleyExplainer.explainer_id(),
            params="",
        )
    ]
)
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 30.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 40.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
<Figure size 640x480 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
../_images/notebooks_h2o-sonar-summary-shap-explainer_5_27.png
../_images/notebooks_h2o-sonar-summary-shap-explainer_5_28.png

Interact with the Explainer Result

[40]:
# retrieve the result
result = interpretation.get_explainer_result(SummaryShapleyExplainer.explainer_id())
[41]:
# open interpretation HTML report in web browser
webbrowser.open(interpretation.result.get_html_report_location())
[41]:
True
[42]:
# summary
result.summary()
[42]:
{'id': 'h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer',
 'name': 'SummaryShapleyExplainer',
 'display_name': 'Shapley Summary Plot for Original Features (Kernel SHAP Method)',
 'description': 'Shapley explanations are a technique with credible theoretical support that presents consistent global and local feature contributions.\n\nThe Shapley Summary Plot shows original features versus their local Shapley values on a sample of the dataset. Feature values are binned by Shapley values and the average normalized feature value for each bin is plotted. The legend corresponds to numeric features and maps to their normalized value - yellow is the lowest value and deep orange is the highest. You can also get a scatter plot of the actual numeric features values versus their corresponding Shapley values. Categorical features are shown in grey and do not provide an actual-value scatter plot.\n\nNotes:\n\n* The Shapley Summary Plot only shows original features that are used in the model.\n* The dataset sample size and the number of bins can be updated in the interpretation settings.\n\n',
 'model_types': ['iid', 'time_series'],
 'can_explain': ['regression', 'binomial', 'multinomial'],
 'explanation_scopes': ['global_scope'],
 'explanations': [{'explanation_type': 'global-summary-feature-importance',
   'name': 'Shapley Summary Plot for Original Features',
   'category': 'DAI MODEL',
   'scope': 'global',
   'has_local': None,
   'formats': ['application/vnd.h2oai.json+datatable.jay',
    'application/json',
    'text/markdown']},
  {'explanation_type': 'global-html-fragment',
   'name': 'Shapley Summary Plot for Original Features',
   'category': 'DAI MODEL',
   'scope': 'global',
   'has_local': None,
   'formats': ['text/html']}],
 'parameters': [{'name': 'max_features',
   'description': 'Maximum number of features to be shown in the plot.',
   'comment': '',
   'type': 'int',
   'val': 50,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'sample_size',
   'description': 'Sample size.',
   'comment': '',
   'type': 'int',
   'val': 20000,
   'predefined': [],
   'tags': [],
   'min_': 100.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'x_shapley_resolution',
   'description': 'x-axis resolution (number of Shapley values bins).',
   'comment': '',
   'type': 'int',
   'val': 500,
   'predefined': [],
   'tags': [],
   'min_': 100.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'enable_drilldown_charts',
   'description': 'Enable creation of per-feature Shapley/feature value scatter plots.',
   'comment': '',
   'type': 'bool',
   'val': True,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'fast_approx_contribs',
   'description': 'Speed up predictions with fast predictions and contributions approximations.',
   'comment': '',
   'type': 'bool',
   'val': True,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''}],
 'keywords': ['run-by-default', 'explains-feature-behavior', 'h2o-sonar']}
[43]:
# parameters
result.params()
[43]:
{'max_features': 50,
 'sample_size': 20000,
 'x_shapley_resolution': 500,
 'enable_drilldown_charts': True,
 'fast_approx_contribs': True}

Display the Shapley Shapley

[44]:
# get the data for all features
result.data()
[44]:
EDUCATIONPAY_AMT6BILL_AMT4BILL_AMT2PAY_6PAY_AMT4PAY_4PAY_2SEXBILL_AMT5PAY_3BILL_AMT6PAY_AMT5PAY_AMT3bias
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
01.65226−0.05479010.1504920.1348080.2268290.001254260.04490240.002387720.187654−0.0959281−0.00967008−0.02615440.0146957−0.00275057−1.44588
12.169810.8429960.04708750.278560.07419610.1664030.1055380.09859590.216323−0.1313410.0249515−0.0197080.00715476−0.00256468−1.44588
22.124660.843833−0.2898470.2694640.1608890.1921030.1000560.1269340.241557−0.07784950.0249515−0.02274360.0014148−0.00256468−1.44588
32.157571.21747−0.2720140.2694640.1657470.2135820.1168870.09692550.241634−0.07530990.0425086−0.006940190.0015317−0.00249899−1.44588
42.157691.19659−0.262040.3976320.1284830.2135820.1146940.139666−0.0189303−0.08396640.0428385−0.02099290.0015317−0.00536187−1.44588
52.123370.803398−0.3239410.3952430.1221760.209660.1177440.142187−0.0196402−0.0820450.0264219−0.02099290.0014148−0.00249899−1.44588
62.117380.869668−0.2024730.4254580.1435730.2413040.9295660.0509855−0.01573541.11738−0.02448570.329203−0.0336277−0.0489256−1.44588
72.293370.8438330.1377660.404340.1080640.158450.05776760.1600950.224786−0.2228550.0256973−0.02069950.000932374−0.00256468−1.44588
80.7213341.2513−0.2325320.2830480.1244770.3775120.09483480.1362910.2531180.001896820.0259171−0.0212313−0.00136092−0.00256468−1.44588
90.695114−0.03252330.1554550.06482070.2065690.4188040.1468970.0309622−0.0181810.008212−0.00483971−0.0162397−0.001931520.00982893−1.44588
100.6285320.8581060.1590850.404340.1285720.3650360.1159370.1552090.253604−0.04747750.0083599−0.01918730.00496686−0.00256468−1.44588
112.173930.920577−0.2897560.2809390.07986390.1930130.1166610.2018230.201997−0.09529890.0426569−0.01992610.005763270.0389418−1.44588
122.0534−0.0557249−0.2902960.1352180.2237410.2871640.1308350.01600610.187147−0.1301390.00207622−0.02327490.00402559−0.00561346−1.44588
132.16171−0.0471414−0.3911990.01393680.1299130.366610.141725−0.0622346−0.0194784−0.0715587−0.003750710.00115651−0.00147781−0.0048881−1.44588
142.1190.807198−0.3736890.2718530.1544950.2559910.1256420.0990493−0.020883−0.07155870.02381090.0009346430.00496686−0.0048881−1.44588
99951.717770.9202410.1711370.1205350.1923330.006379310.01204220.1286050.23573−0.2587650.0101926−0.04678040.00943316−0.000446296−1.44588
99961.85219−0.03683250.1698840.06704420.2580130.005486350.30880.0103710.18666−0.239416−0.00949212−0.02355760.009509570.00752465−1.44588
99970.5245471.20039−0.3814070.2850960.2427930.4235180.4160650.0728544−0.02086860.6558050.05455220.0371469−0.0371309−0.00533337−1.44588
99981.70712−0.05436960.1712080.01992560.2537930.005370590.03607390.0103710.18651−0.258171−0.0185096−0.02639280.00943316−0.00275057−1.44588
99992.162111.23041−0.2722310.2710510.2343450.1775030.09051040.136922−0.020883−0.07955330.041368−0.02099290.00283075−0.0048881−1.44588
[45]:
# get the data for only feature "PAY_0"
result.data(feature_names="PAY_0")
[45]:
PAY_0bias
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
0−0.0285793−1.44588
1−0.0316909−1.44588
2−0.0264079−1.44588
3−0.0264079−1.44588
40.16752−1.44588
50.16752−1.44588
60.16752−1.44588
70.157119−1.44588
80.295939−1.44588
90.155822−1.44588
100.281417−1.44588
11−0.0316909−1.44588
12−0.0264079−1.44588
13−0.0285916−1.44588
14−0.0233086−1.44588
9995−0.0285793−1.44588
9996−0.0131348−1.44588
9997−0.0391121−1.44588
9998−0.0285793−1.44588
9999−0.0233086−1.44588
[46]:
# get the data for "PAY_0", "AGE and "EDUCATION"
result.data(feature_names=["PAY_0", "AGE", "EDUCATION"])
[46]:
PAY_0AGEEDUCATIONbias
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
0−0.0285793−0.06741941.65226−1.44588
1−0.0316909−0.0345432.16981−1.44588
2−0.0264079−0.01914442.12466−1.44588
3−0.0264079−0.01622122.15757−1.44588
40.16752−0.01914442.15769−1.44588
50.16752−0.01914442.12337−1.44588
60.16752−0.03733512.11738−1.44588
70.157119−0.01208552.29337−1.44588
80.295939−0.02204560.721334−1.44588
90.155822−0.02139680.695114−1.44588
100.281417−0.03746210.628532−1.44588
11−0.0316909−0.02946822.17393−1.44588
12−0.0264079−0.02558512.0534−1.44588
13−0.0285916−0.01912252.16171−1.44588
14−0.0233086−0.01622122.119−1.44588
9995−0.0285793−0.08646211.71777−1.44588
9996−0.0131348−0.07583961.85219−1.44588
9997−0.0391121−0.03919570.524547−1.44588
9998−0.0285793−0.08646211.70712−1.44588
9999−0.0233086−0.01914442.16211−1.44588

Plot the Summary Shapley

[47]:
# plot summary shap for all features
result.plot()
invalid value encountered in divide
../_images/notebooks_h2o-sonar-summary-shap-explainer_16_1.png
[48]:
# plot summary shap for "PAY_0", "AGE and "EDUCATION"
result.plot(feature_names=["PAY_0", "AGE", "EDUCATION"])
invalid value encountered in divide
../_images/notebooks_h2o-sonar-summary-shap-explainer_17_1.png

Save the explainer log and data

[49]:
# save the explainer log
result.log(path="./summary-shapley-demo.log")
[50]:
!head summary-shapley-demo.log
2023-03-13 00:10:38,853 INFO Summary Shapley explainer a38d3c78-087a-49c4-94cd-837e4f6bb08e/513ca372-eb5d-41df-8689-3585a7c3e547 raw MEANs (1)
2023-03-13 00:10:38,854 INFO Summary Shapley explainer a38d3c78-087a-49c4-94cd-837e4f6bb08e/513ca372-eb5d-41df-8689-3585a7c3e547 raw CONTRIBs (1)
[51]:
# save the explainer data
result.zip(file_path="./summary-shapley-demo-archive.zip")
[52]:
!unzip -l summary-shapley-demo-archive.zip
Archive:  summary-shapley-demo-archive.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
     4013  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/result_descriptor.json
   627902  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/work/shapley-class-0.png
  2002376  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/work/raw_shapley_contribs_class_0.jay
     1091  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/work/raw_shapley_contribs_index.json
      141  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/work/report.md
      110  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html.meta
   627902  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/shapley-class-0.png
    86557  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_9_class_0.png
   201678  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_17_class_0.png
    83915  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_15_class_0.png
    57051  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_21_class_0.png
   149653  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_18_class_0.png
    92514  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_12_class_0.png
    42226  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_8_class_0.png
    75786  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_14_class_0.png
   103574  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_20_class_0.png
    98522  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_6_class_0.png
    83694  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_4_class_0.png
     8603  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/explanation.html
    70706  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_10_class_0.png
    55822  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_23_class_0.png
   249212  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_16_class_0.png
   196410  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_19_class_0.png
    66859  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_13_class_0.png
   131318  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_1_class_0.png
    77100  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_0_class_0.png
    76801  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_22_class_0.png
   173293  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_3_class_0.png
   110416  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_5_class_0.png
    82248  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_11_class_0.png
   108348  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_2_class_0.png
   100218  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_html_fragment/text_html/feature_7_class_0.png
      157  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json.meta
      122  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/text_markdown.meta
      199  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_vnd_h2oai_json_datatable_jay.meta
   419600  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_vnd_h2oai_json_datatable_jay/summary_feature_importance_class_0.jay
     1191  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_vnd_h2oai_json_datatable_jay/explanation.json
   818502  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/summary_feature_importance_class_0_offset_1.json
    86557  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_9_class_0.png
   201678  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_17_class_0.png
    83915  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_15_class_0.png
    57051  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_21_class_0.png
   149653  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_18_class_0.png
    92514  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_12_class_0.png
   327225  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/summary_feature_importance_class_0_offset_2.json
    42226  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_8_class_0.png
    75786  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_14_class_0.png
   103574  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_20_class_0.png
    98522  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_6_class_0.png
   826501  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/summary_feature_importance_class_0_offset_0.json
    83694  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_4_class_0.png
    70706  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_10_class_0.png
    55822  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_23_class_0.png
   249212  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_16_class_0.png
     2629  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/explanation.json
   196410  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_19_class_0.png
    66859  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_13_class_0.png
   131318  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_1_class_0.png
    77100  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_0_class_0.png
    76801  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_22_class_0.png
   173293  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_3_class_0.png
   110416  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_5_class_0.png
    82248  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_11_class_0.png
   108348  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_2_class_0.png
   100218  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/application_json/feature_7_class_0.png
   627902  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/text_markdown/shapley-class-0.png
      141  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/global_summary_feature_importance/text_markdown/explanation.md
        2  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/model_problems/problems_and_actions.json
      289  2023-03-13 00:10   explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_513ca372-eb5d-41df-8689-3585a7c3e547/log/explainer_run_513ca372-eb5d-41df-8689-3585a7c3e547.log
---------                     -------
 11444440                     69 files
[ ]: