Decision Tree Surrogate Explainer Demo

This example demonstrates how to interpret a Scikit-learn model using the H2O Eval Studio library and plot decision tree.

[1]:
import logging

import pandas
import webbrowser

from h2o_sonar import interpret
from h2o_sonar.lib.api import commons, explainers
from h2o_sonar.explainers.dt_surrogate_explainer import DecisionTreeSurrogateExplainer
from h2o_sonar.lib.api.models import ModelApi

from sklearn.ensemble import GradientBoostingClassifier
[2]:
results_location = "../../results"

# dataset
dataset_path = "../../data/creditcard.csv"
target_col = "default payment next month"
df = pandas.read_csv(dataset_path)
(X, y) = df.drop(target_col, axis=1), df[target_col]
[3]:
# parameters
interpret.describe_explainer(DecisionTreeSurrogateExplainer)
[3]:
{'id': 'h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainer',
 'name': 'DecisionTreeSurrogateExplainer',
 'display_name': 'Surrogate Decision Tree',
 'description': 'The surrogate decision tree is an approximate overall flow chart of the model, created by training a simple decision tree on the original inputs and the predictions of the model.',
 'model_types': ['iid', 'time_series'],
 'can_explain': ['regression', 'binomial', 'multinomial'],
 'explanation_scopes': ['global_scope', 'local_scope'],
 'explanations': [{'explanation_type': 'global-decision-tree',
   'name': 'GlobalDtExplanation',
   'category': None,
   'scope': 'global',
   'has_local': None,
   'formats': []},
  {'explanation_type': 'local-decision-tree',
   'name': 'LocalDtExplanation',
   'category': None,
   'scope': 'local',
   'has_local': None,
   'formats': []}],
 'parameters': [{'name': 'debug_residuals',
   'description': 'Debug model residuals.',
   'comment': '',
   'type': 'bool',
   'val': False,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'debug_residuals_class',
   'description': 'Class for debugging classification model logloss residuals, empty string for debugging regression model residuals.',
   'comment': '',
   'type': 'str',
   'val': '',
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'dt_tree_depth',
   'description': 'Decision tree depth.',
   'comment': '',
   'type': 'int',
   'val': 3,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'nfolds',
   'description': 'Number of CV folds.',
   'comment': '',
   'type': 'int',
   'val': 3,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'qbin_cols',
   'description': 'Quantile binning columns.',
   'comment': '',
   'type': 'list',
   'val': None,
   'predefined': [],
   'tags': ['SOURCE_DATASET_COLUMN_NAMES'],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'qbin_count',
   'description': 'Quantile bins count.',
   'comment': '',
   'type': 'int',
   'val': 0,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'categorical_encoding',
   'description': 'Categorical encoding.',
   'comment': 'Specify one of the following encoding schemes for handling of categorical features:\n\n_**AUTO**_: 1 column per categorical feature.\n\n_**Enum Limited**_: Automatically reduce categorical levels to the most prevalent ones during training and only keep the top 10 most frequent levels.\n\n_**One Hot Encoding**_: N+1 new columns for categorical features with N levels.\n\n_**Label Encoder**_: Convert every enum into the integer of its index (for example, level 0 -> 0, level 1 -> 1, etc.).\n\n_**Sort by Response**_: Reorders the levels by the mean response (for example, the level with lowest response -> 0, the level with second-lowest response -> 1, etc.).',
   'type': 'str',
   'val': 'onehotexplicit',
   'predefined': ['AUTO',
    'One Hot Encoding',
    'Enum Limited',
    'Sort by Response',
    'Label Encoder'],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''}],
 'keywords': ['run-by-default',
  'requires-h2o3',
  'surrogate',
  'explains-approximate-behavior',
  'h2o-sonar']}

Interpret

[4]:
# scikit-learn model
gradient_booster = GradientBoostingClassifier(learning_rate=0.1)
gradient_booster.fit(X, y)

# explainable model
model = ModelApi().create_model(target_col=target_col, model_src=gradient_booster, used_features=X.columns.to_list())

interpretation = interpret.run_interpretation(
    dataset=df,
    model=model,
    target_col=target_col,
    results_location=results_location,
    log_level=logging.INFO,
    explainers=[
        commons.ExplainerToRun(
            explainer_id=DecisionTreeSurrogateExplainer.explainer_id(),
            params="",
        )
    ]
)
Checking whether there is an H2O instance running at http://localhost:59443 .
/home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
.... not found.
Attempting to start a local H2O server...
  Java Version: openjdk version "11.0.18" 2023-01-17; OpenJDK Runtime Environment (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1); OpenJDK 64-Bit Server VM (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1, mixed mode, sharing)
  Starting server from /home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/hmli/backend/bin/hmli.jar
  Ice root: /tmp/tmplwjtt0my
  JVM stdout: /tmp/tmplwjtt0my/hmli_srasaratnam_started_from_python.out
  JVM stderr: /tmp/tmplwjtt0my/hmli_srasaratnam_started_from_python.err
  Server is running at http://127.0.0.1:59443
Connecting to H2O server at http://127.0.0.1:59443 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_cd8dkd
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://127.0.0.1:59443
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
2023-03-12 23:09:42,200 - h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainerLogger - INFO - Surrogate decision tree 1753602f-35f6-40ef-b62f-7a2e5241fb6c/4900ed82-8ead-4191-be69-8dd239704409: connecting to H2O-3 server: localhost:59443
Connecting to H2O server at http://localhost:59443 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_cd8dkd
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://localhost:59443
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
drf Model Build progress: |
Response is numeric, so the regression model will be trained. However, the cardinality is equaled to two, so if you want to train a classification model, convert the response column to categorical before training.
██████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Export File progress: |
2023-03-12 23:09:45,561 - h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainerLogger - INFO - Surrogate decision tree 1753602f-35f6-40ef-b62f-7a2e5241fb6c/4900ed82-8ead-4191-be69-8dd239704409: DONE calculation
██████████████████████████████████████████████████████████| (done) 100%
H2O session _sid_ab77 closed.

Interact with the Explainer Result

[5]:
# retrieve the result
result = interpretation.get_explainer_result(DecisionTreeSurrogateExplainer.explainer_id())

# result.data() method is not supported in this explainer
[6]:
# open interpretation HTML report in web browser
webbrowser.open(interpretation.result.get_html_report_location())
[6]:
True
[7]:
# summary
result.summary()
[7]:
{'id': 'h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainer',
 'name': 'DecisionTreeSurrogateExplainer',
 'display_name': 'Surrogate Decision Tree',
 'description': 'The surrogate decision tree is an approximate overall flow chart of the model, created by training a simple decision tree on the original inputs and the predictions of the model.',
 'model_types': ['iid', 'time_series'],
 'can_explain': ['regression', 'binomial', 'multinomial'],
 'explanation_scopes': ['global_scope', 'local_scope'],
 'explanations': [{'explanation_type': 'global-decision-tree',
   'name': 'Decision Tree',
   'category': 'SURROGATE MODELS',
   'scope': 'global',
   'has_local': 'local-decision-tree',
   'formats': ['application/json']},
  {'explanation_type': 'local-decision-tree',
   'name': 'Local DT',
   'category': 'SURROGATE MODELS',
   'scope': 'local',
   'has_local': None,
   'formats': ['application/json']},
  {'explanation_type': 'global-html-fragment',
   'name': 'Surrogate Decision Tree',
   'category': 'SURROGATE MODELS',
   'scope': 'global',
   'has_local': None,
   'formats': ['text/html']},
  {'explanation_type': 'global-custom-archive',
   'name': 'Decision tree surrogate rules ZIP archive',
   'category': 'SURROGATE MODELS',
   'scope': 'global',
   'has_local': None,
   'formats': ['application/zip']}],
 'parameters': [{'name': 'debug_residuals',
   'description': 'Debug model residuals.',
   'comment': '',
   'type': 'bool',
   'val': False,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'debug_residuals_class',
   'description': 'Class for debugging classification model logloss residuals, empty string for debugging regression model residuals.',
   'comment': '',
   'type': 'str',
   'val': '',
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'dt_tree_depth',
   'description': 'Decision tree depth.',
   'comment': '',
   'type': 'int',
   'val': 3,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'nfolds',
   'description': 'Number of CV folds.',
   'comment': '',
   'type': 'int',
   'val': 3,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'qbin_cols',
   'description': 'Quantile binning columns.',
   'comment': '',
   'type': 'list',
   'val': None,
   'predefined': [],
   'tags': ['SOURCE_DATASET_COLUMN_NAMES'],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'qbin_count',
   'description': 'Quantile bins count.',
   'comment': '',
   'type': 'int',
   'val': 0,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'categorical_encoding',
   'description': 'Categorical encoding.',
   'comment': 'Specify one of the following encoding schemes for handling of categorical features:\n\n_**AUTO**_: 1 column per categorical feature.\n\n_**Enum Limited**_: Automatically reduce categorical levels to the most prevalent ones during training and only keep the top 10 most frequent levels.\n\n_**One Hot Encoding**_: N+1 new columns for categorical features with N levels.\n\n_**Label Encoder**_: Convert every enum into the integer of its index (for example, level 0 -> 0, level 1 -> 1, etc.).\n\n_**Sort by Response**_: Reorders the levels by the mean response (for example, the level with lowest response -> 0, the level with second-lowest response -> 1, etc.).',
   'type': 'str',
   'val': 'onehotexplicit',
   'predefined': ['AUTO',
    'One Hot Encoding',
    'Enum Limited',
    'Sort by Response',
    'Label Encoder'],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''}],
 'keywords': ['run-by-default',
  'requires-h2o3',
  'surrogate',
  'explains-approximate-behavior',
  'h2o-sonar']}
[8]:
# parameters
result.params()
[8]:
{'debug_residuals': False,
 'debug_residuals_class': '',
 'dt_tree_depth': 3,
 'nfolds': 3,
 'qbin_cols': None,
 'qbin_count': 0,
 'categorical_encoding': 'onehotexplicit'}

Plot the Decision Tree

[9]:
result.plot()

# show plot in a separate view
# result.plot().render(view=True)
[9]:
../_images/notebooks_h2o-sonar-dt-surrogate-explainer_12_0.svg

Save the explainer log and data

[10]:
# save the explainer log
result.log(path="./dt-surrogate-demo.log")
[11]:
!head dt-surrogate-demo.log
2023-03-12 23:09:42,047 INFO Surrogate decision tree 1753602f-35f6-40ef-b62f-7a2e5241fb6c/4900ed82-8ead-4191-be69-8dd239704409: BEGIN calculation
2023-03-12 23:09:42,047 INFO Surrogate decision tree 1753602f-35f6-40ef-b62f-7a2e5241fb6c/4900ed82-8ead-4191-be69-8dd239704409: dataset (10000, 25) loaded
2023-03-12 23:09:42,047 INFO Surrogate decision tree 1753602f-35f6-40ef-b62f-7a2e5241fb6c/4900ed82-8ead-4191-be69-8dd239704409: sampling down to 0 rows...
2023-03-12 23:09:42,200 INFO Surrogate decision tree 1753602f-35f6-40ef-b62f-7a2e5241fb6c/4900ed82-8ead-4191-be69-8dd239704409: connecting to H2O-3 server: localhost:59443
2023-03-12 23:09:45,561 INFO Surrogate decision tree 1753602f-35f6-40ef-b62f-7a2e5241fb6c/4900ed82-8ead-4191-be69-8dd239704409: DONE calculation
[12]:
# save the explainer data
result.zip(file_path="./dt-surrogate-demo-archive.zip")
[13]:
!unzip -l dt-surrogate-demo-archive.zip
Archive:  dt-surrogate-demo-archive.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
     5284  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/result_descriptor.json
     1925  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/work/dt-class-0.dot
    61638  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/work/dtModel.json
  1004758  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/work/dtPathsFrame.csv
     8711  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/work/dt-class-0.dot.pdf
     3133  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/work/dt_surrogate_rules.zip
     9332  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/work/dtsurr_mojo.zip
  1042912  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/work/dtpaths_frame.bin
     5910  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/work/dtSurrogate.json
      140  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/global_custom_archive/application_zip.meta
     3133  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/global_custom_archive/application_zip/explanation.zip
      110  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/global_html_fragment/text_html.meta
      388  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/global_html_fragment/text_html/explanation.html
   131815  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/global_html_fragment/text_html/dt-class-0.png
        2  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/model_problems/problems_and_actions.json
      773  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/log/explainer_run_4900ed82-8ead-4191-be69-8dd239704409.log
      133  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/global_decision_tree/application_json.meta
      646  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/global_decision_tree/application_json/explanation.json
     2476  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/global_decision_tree/application_json/dt_class_0.json
      131  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/local_decision_tree/application_json.meta
      498  2023-03-12 23:09   explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_4900ed82-8ead-4191-be69-8dd239704409/local_decision_tree/application_json/explanation.json
---------                     -------
  2283848                     21 files
[ ]: