Disparate Impact Analysis (DIA) Explainer Demo
This example demonstrates how to interpret a scikit-learn model using the H2O Eval Studio library and retrieve the data and plot the Disparate Impact Analysis.
[1]:
import logging
import pandas
import webbrowser
from h2o_sonar import interpret
from h2o_sonar.lib.api import commons, explainers
from h2o_sonar.explainers.dia_explainer import DiaExplainer
from h2o_sonar.lib.api.models import ModelApi
from sklearn.ensemble import GradientBoostingClassifier
[2]:
results_location = "../../results"
# dataset
dataset_path = "../../data/creditcard.csv"
target_col = "default payment next month"
df = pandas.read_csv(dataset_path)
(X, y) = df.drop(target_col, axis=1), df[target_col]
[3]:
# parameters
interpret.describe_explainer(DiaExplainer)
[3]:
{'id': 'h2o_sonar.explainers.dia_explainer.DiaExplainer',
'name': 'DiaExplainer',
'display_name': 'Disparate Impact Analysis',
'description': 'Disparate Impact Analysis (DIA) is a technique that is used to evaluate fairness. Bias can be introduced to models during the process of collecting, processing, and labeling data as a result, it is important to determine whether a model is harming certain users by making a significant number of biased decisions. DIA typically works by comparing aggregate measurements of unprivileged groups to a privileged group. For instance, the proportion of the unprivileged group that receives the potentially harmful outcome is divided by the proportion of the privileged group that receives the same outcome - the resulting proportion is then used to determine whether the model is biased.',
'model_types': ['iid', 'time_series'],
'can_explain': ['regression', 'binomial'],
'explanation_scopes': ['global_scope'],
'explanations': [{'explanation_type': 'global-disparate-impact-analysis',
'name': 'DiaExplanation',
'category': None,
'scope': 'global',
'has_local': None,
'formats': []}],
'parameters': [{'name': 'dia_cols',
'description': 'List of features for which to compute DIA.',
'comment': '',
'type': 'list',
'val': None,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'cut_off',
'description': 'Cut off.',
'comment': '',
'type': 'float',
'val': 0.0,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'maximize_metric',
'description': 'Maximize metric.',
'comment': '',
'type': 'str',
'val': 'F1',
'predefined': ['F1', 'F05', 'F2', 'MCC'],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'max_cardinality',
'description': 'Max cardinality for categorical variables.',
'comment': '',
'type': 'int',
'val': 10,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'min_cardinality',
'description': 'Minimum cardinality for categorical variables.',
'comment': '',
'type': 'int',
'val': 2,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'num_card',
'description': 'Max cardinality for numeric variables to be considered categorical.',
'comment': '',
'type': 'int',
'val': 25,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''}],
'keywords': ['run-by-default', 'explains-fairness', 'h2o-sonar']}
Interpret
[4]:
# scikit-learn model
gradient_booster = GradientBoostingClassifier(learning_rate=0.1)
gradient_booster.fit(X, y)
# explainable model
model = ModelApi().create_model(target_col=target_col, model_src=gradient_booster, used_features=X.columns.to_list())
interpretation = interpret.run_interpretation(
dataset=df,
model=model,
target_col=target_col,
results_location=results_location,
log_level=logging.INFO,
explainers=[
commons.ExplainerToRun(
explainer_id=DiaExplainer.explainer_id(),
params="",
)
]
)
/home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
Preparing and checking DIA features (None): dataset= | BILL_AMT5 LIMIT_BAL default payment next month PAY_5 ID BILL_AMT6 AGE BILL_AMT1 PAY_0 PAY_AMT2 … BILL_AMT3 PAY_AMT5 SEX PAY_6 PAY_2
| int64 int64 int64 int64 int64 int64 int64 int64 int64 int64 int64 int64 int64 int64 int64
---- + --------- --------- -------------------------- ----- ----- --------- ----- --------- ----- -------- --------- -------- ----- ----- -----
0 | 0 20000 1 -2 1 0 24 3913 -2 689 … 689 0 2 -2 2
1 | 3455 120000 1 0 2 3261 26 2682 -1 1000 … 2682 0 2 2 2
2 | 14948 90000 0 0 3 15549 34 29239 0 1500 … 13559 1000 2 0 0
3 | 28959 50000 0 0 4 29547 37 46990 1 2019 … 49291 1069 2 0 0
4 | 19146 50000 0 0 5 19131 57 8617 2 36681 … 35835 689 1 0 0
5 | 19619 50000 0 0 6 20024 37 64400 3 1815 … 57608 1000 1 0 0
6 | 483003 500000 0 0 7 473944 29 367965 4 40000 … 445007 13750 1 0 0
7 | -159 100000 0 0 8 567 23 11876 5 601 … 601 1687 2 -1 -1
8 | 11793 140000 0 0 9 3719 28 11285 6 0 … 12108 1000 2 0 0
9 | 13007 20000 0 -1 10 13912 35 0 7 0 … 0 1122 1 -1 -2
10 | 1828 200000 0 0 11 3731 34 11073 8 12 … 5535 3738 2 -1 0
11 | 22287 260000 0 -1 12 13668 51 12261 -1 9966 … 9966 0 2 2 -1
12 | 6500 630000 0 -1 13 2870 41 12137 -1 6500 … 6500 2870 2 -1 0
13 | 36137 70000 1 0 14 36894 30 65802 1 0 … 65701 1500 1 2 2
14 | 56875 250000 0 0 15 55512 29 70887 0 3000 … 63561 3000 1 0 0
… | … … … … … … … … … … … … … … … …
9995 | 0 140000 0 -2 9996 0 31 0 1 0 … 0 0 2 -2 -2
9996 | 0 80000 0 -2 9997 0 37 3946 -2 0 … 0 0 2 -2 -2
9997 | 176717 200000 0 0 9998 168431 44 138877 0 5000 … 142520 10017 1 0 0
9998 | 0 80000 1 -2 9999 0 26 780 -1 0 … 0 0 2 -2 2
9999 | 19255 230000 0 0 10000 17479 36 19505 0 3000 … 19750 3000 1 0 0
[10000 rows x 25 columns]
dataset_meta={
"shape": "(10000, 25)",
"row_count": 10000,
"column_names": [
"ID",
"LIMIT_BAL",
"SEX",
"EDUCATION",
"MARRIAGE",
"AGE",
"PAY_0",
"PAY_2",
"PAY_3",
"PAY_4",
"PAY_5",
"PAY_6",
"BILL_AMT1",
"BILL_AMT2",
"BILL_AMT3",
"BILL_AMT4",
"BILL_AMT5",
"BILL_AMT6",
"PAY_AMT1",
"PAY_AMT2",
"PAY_AMT3",
"PAY_AMT4",
"PAY_AMT5",
"PAY_AMT6",
"default payment next month"
],
"column_types": [
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int",
"int"
],
"column_uniques": [
10000,
72,
2,
7,
4,
54,
11,
11,
11,
11,
10,
10,
8371,
8215,
8072,
7913,
7764,
7550,
3763,
3581,
3305,
3247,
3258,
3174,
2
],
"columns_cat": [],
"columns_num": [],
"file_path": "",
"file_name": "",
"file_size": 0,
"missing_values": [
"",
"?",
"None",
"nan",
"NA",
"N/A",
"unknown",
"inf",
"-inf",
"1.7976931348623157e+308",
"-1.7976931348623157e+308"
],
"columns_meta": [
{
"name": "ID",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": true,
"is_numeric": true,
"is_categorical": false,
"count": 10000,
"frequency": 0,
"unique": 10000,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "LIMIT_BAL",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 72,
"frequency": 0,
"unique": 72,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "SEX",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 2,
"frequency": 0,
"unique": 2,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "EDUCATION",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 7,
"frequency": 0,
"unique": 7,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "MARRIAGE",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 4,
"frequency": 0,
"unique": 4,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "AGE",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 54,
"frequency": 0,
"unique": 54,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_0",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 11,
"frequency": 0,
"unique": 11,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_2",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 11,
"frequency": 0,
"unique": 11,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_3",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 11,
"frequency": 0,
"unique": 11,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_4",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 11,
"frequency": 0,
"unique": 11,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_5",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 10,
"frequency": 0,
"unique": 10,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_6",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 10,
"frequency": 0,
"unique": 10,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "BILL_AMT1",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 8371,
"frequency": 0,
"unique": 8371,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "BILL_AMT2",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 8215,
"frequency": 0,
"unique": 8215,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "BILL_AMT3",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 8072,
"frequency": 0,
"unique": 8072,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "BILL_AMT4",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 7913,
"frequency": 0,
"unique": 7913,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "BILL_AMT5",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 7764,
"frequency": 0,
"unique": 7764,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "BILL_AMT6",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 7550,
"frequency": 0,
"unique": 7550,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_AMT1",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 3763,
"frequency": 0,
"unique": 3763,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_AMT2",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 3581,
"frequency": 0,
"unique": 3581,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_AMT3",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 3305,
"frequency": 0,
"unique": 3305,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_AMT4",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 3247,
"frequency": 0,
"unique": 3247,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_AMT5",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 3258,
"frequency": 0,
"unique": 3258,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "PAY_AMT6",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 3174,
"frequency": 0,
"unique": 3174,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
},
{
"name": "default payment next month",
"data_type": "int",
"logical_types": [],
"format": "",
"is_id": false,
"is_numeric": true,
"is_categorical": false,
"count": 2,
"frequency": 0,
"unique": 2,
"max": null,
"min": null,
"mean": null,
"std": null,
"histogram_counts": [],
"histogram_ticks": []
}
]
}
Using dataset ENTITY to prepare DIA features: column_names=['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default payment next month'] column_uniques=[10000, 72, 2, 7, 4, 54, 11, 11, 11, 11, 10, 10, 8371, 8215, 8072, 7913, 7764, 7550, 3763, 3581, 3305, 3247, 3258, 3174, 2]
DIA group columns prepared using dataset ENTITY: {'MARRIAGE', 'PAY_0', 'default payment next month', 'PAY_5', 'PAY_4', 'PAY_3', 'SEX', 'PAY_6', 'EDUCATION', 'PAY_2'}
DIA group columns to SKIP: {'model_pred', 'default payment next month'}
DIA group columns as BOOLs: [<h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5880>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5940>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c59a0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5a00>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5a60>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5ac0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5b20>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5b80>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5be0>]
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().



































































































Interact with the Explainer Result
[5]:
# retrieve the result
result = interpretation.get_explainer_result(DiaExplainer.explainer_id())
[6]:
# open interpretation HTML report in web browser
webbrowser.open(interpretation.result.get_html_report_location())
[6]:
True
[7]:
# summary
result.summary()
[7]:
{'id': 'h2o_sonar.explainers.dia_explainer.DiaExplainer',
'name': 'DiaExplainer',
'display_name': 'Disparate Impact Analysis',
'description': 'Disparate Impact Analysis (DIA) is a technique that is used to evaluate fairness. Bias can be introduced to models during the process of collecting, processing, and labeling data as a result, it is important to determine whether a model is harming certain users by making a significant number of biased decisions. DIA typically works by comparing aggregate measurements of unprivileged groups to a privileged group. For instance, the proportion of the unprivileged group that receives the potentially harmful outcome is divided by the proportion of the privileged group that receives the same outcome - the resulting proportion is then used to determine whether the model is biased.',
'model_types': ['iid', 'time_series'],
'can_explain': ['regression', 'binomial'],
'explanation_scopes': ['global_scope'],
'explanations': [{'explanation_type': 'global-disparate-impact-analysis',
'name': 'Disparate Impact Analysis',
'category': 'DAI MODEL',
'scope': 'global',
'has_local': None,
'formats': ['text/plain']},
{'explanation_type': 'global-html-fragment',
'name': 'Disparate Impact Analysis',
'category': 'DAI MODEL',
'scope': 'global',
'has_local': None,
'formats': ['text/html']}],
'parameters': [{'name': 'dia_cols',
'description': 'List of features for which to compute DIA.',
'comment': '',
'type': 'list',
'val': None,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'cut_off',
'description': 'Cut off.',
'comment': '',
'type': 'float',
'val': 0.0,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'maximize_metric',
'description': 'Maximize metric.',
'comment': '',
'type': 'str',
'val': 'F1',
'predefined': ['F1', 'F05', 'F2', 'MCC'],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'max_cardinality',
'description': 'Max cardinality for categorical variables.',
'comment': '',
'type': 'int',
'val': 10,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'min_cardinality',
'description': 'Minimum cardinality for categorical variables.',
'comment': '',
'type': 'int',
'val': 2,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''},
{'name': 'num_card',
'description': 'Max cardinality for numeric variables to be considered categorical.',
'comment': '',
'type': 'int',
'val': 25,
'predefined': [],
'tags': [],
'min_': 0.0,
'max_': 0.0,
'category': ''}],
'keywords': ['run-by-default', 'explains-fairness', 'h2o-sonar']}
[8]:
# parameters
result.params()
[8]:
{'dia_cols': ['MARRIAGE',
'PAY_0',
'PAY_5',
'PAY_4',
'PAY_3',
'SEX',
'PAY_6',
'EDUCATION',
'PAY_2'],
'cut_off': 0.0,
'maximize_metric': 'F1',
'max_cardinality': 10,
'min_cardinality': 2,
'num_card': 25}
Display the DIA data
[9]:
# Print method help
import pprint
pprint.pprint(result.help())
{'methods': {'data': {'doc': '',
'parameters': [{'default': '',
'doc': 'The name of the feature whose '
'data we want to retrieve.',
'name': 'feature_name',
'required': True,
'type': 'str'},
{'default': '',
'doc': 'The category of data to be '
'retrieve. This can be one of the '
"following: 'metrics', 'cm', "
"'me_smd', 'disparity' and "
"'parity'",
'name': 'category',
'required': True,
'type': 'str'},
{'default': 'The first reference level '
'will be selected from the '
'set of available reference '
'levels.',
'doc': 'The reference levels for each '
'categorical data',
'name': 'ref_level',
'required': False,
'type': 'str | int'}]}}}
[10]:
result.data(feature_name="MARRIAGE", category=result.DiaCategory.DIA_METRICS)
[10]:
Groups | N | Adverse Impact | Accuracy | True Positive Rate | Precision | Specificity | Negative Predicted Value | False Positive Rate | False Discovery Rate | False Negative Rate | False Omissions Rate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | |
0 | 0 | 17 | 0.1314 | 0.7111 | 0.151394 | 0.260274 | 0.874435 | 0.7793 | 0.125565 | 0.739726 | 0.848606 | 0.2207 |
1 | 1 | 4390 | 0.136902 | 0.697722 | 0.155598 | 0.272879 | 0.869005 | 0.76511 | 0.130995 | 0.727121 | 0.844402 | 0.23489 |
2 | 2 | 5468 | 0.127835 | 0.72147 | 0.14966 | 0.251788 | 0.878145 | 0.790312 | 0.121855 | 0.748212 | 0.85034 | 0.209688 |
3 | 3 | 125 | 0.088 | 0.72 | 0.0714286 | 0.181818 | 0.907216 | 0.77193 | 0.0927835 | 0.818182 | 0.928571 | 0.22807 |
[11]:
result.data(feature_name="EDUCATION", category=result.DiaCategory.DIA_CATEGORY_DISPARITY, ref_level="3")
[11]:
Groups | N | Adverse Impact Disparity | Marginal Error | Standardized Mean Difference | Accuracy Disparity | True Positive Rate Disparity | Precision Disparity | Specificity Disparity | Negative Predicted Value Disparity | False Positive Rate Disparity | False Discovery Rate Disparity | False Negative Rate Disparity | False Omissions Rate Disparity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪ | |
0 | 0 | 3 | 1.14795 | −0.0169346 | 0.647818 | 1.01586 | 1.19602 | 0.947397 | 0.983019 | 1.03222 | 1.13675 | 1.01993 | 0.971592 | 0.900712 |
1 | 1 | 3714 | 1.4137 | −0.0473547 | 0.140163 | 1.02392 | 1.65135 | 0.981165 | 0.956258 | 1.06373 | 1.35226 | 1.00713 | 0.905601 | 0.803646 |
2 | 2 | 4588 | 0.971119 | 0.00330586 | −0.00978488 | 1.01227 | 0.933703 | 0.913569 | 1.00166 | 1.01436 | 0.986664 | 1.03274 | 1.00961 | 0.95574 |
3 | 3 | 1590 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 4 | 26 | 1.34404 | −0.0393808 | 0.116561 | 1.15385 | 0 | 0 | 0.944309 | 1.26435 | 1.44848 | 1.37879 | 1.14493 | 0.185507 |
5 | 5 | 69 | 1.51935 | −0.0594476 | 0.175956 | 1.15942 | 3.16 | 0.606667 | 0.948524 | 1.25484 | 1.41454 | 1.14899 | 0.686957 | 0.214798 |
6 | 6 | 10 | 3.49451 | −0.285535 | 0.845141 | 0.857143 | NA | 0 | 0.674506 | 1.32455 | 3.62121 | 1.37879 | NA | 0 |
[12]:
result.data(feature_name="PAY_4", category=result.DiaCategory.DIA_CATEGORY_CM, ref_level=-1)
[12]:
actual1 | actual0 | |
---|---|---|
▪▪▪▪ | ▪▪▪▪ | |
0 | 49 | 208 |
1 | 287 | 1436 |
[13]:
result.data(feature_name="SEX", category=result.DiaCategory.DIA_CATEGORY_ME_SMD)
[13]:
Groups | N | Marginal Error | Standardized Mean Difference | |
---|---|---|---|---|
▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪▪▪▪▪ | |
0 | 1 | 4206 | 0 | 0 |
1 | 2 | 5794 | −0.0101226 | 0.0299615 |
[14]:
result.data(feature_name="PAY_2", category=result.DiaCategory.DIA_CATEGORY_PARITY)
[14]:
Groups | N | Adverse Impact Parity | Accuracy Parity | True Positive Rate Parity | Precision Parity | Specificity Parity | Negative Predicted Value Parity | False Positive Rate Parity | False Discovery Rate Parity | … | Type I Parity | Type II Parity | Equalized Odds | Supervised Fairness | Overall Fairness | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ▪ | ||
0 | -2 | 1218 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | … | 1 | 1 | 1 | 1 | 1 |
1 | -1 | 2171 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | … | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 5147 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | … | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 8 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
4 | 2 | 1294 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
5 | 3 | 106 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
6 | 4 | 25 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
7 | 5 | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
8 | 6 | 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
9 | 7 | 12 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
10 | 8 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
11 | all | 10000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | … | 0 | 0 | 0 | 0 | 0 |
[15]:
result.data(feature_name="MARRIAGE", category=result.DiaCategory.DIA_CATEGORY_DISPARITY)
[15]:
Groups | N | Adverse Impact Disparity | Marginal Error | Standardized Mean Difference | Accuracy Disparity | True Positive Rate Disparity | Precision Disparity | Specificity Disparity | Negative Predicted Value Disparity | False Positive Rate Disparity | False Discovery Rate Disparity | False Negative Rate Disparity | False Omissions Rate Disparity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
▪▪▪▪▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | ▪▪▪▪ | |
0 | 0 | 17 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 4390 | 1.04187 | −0.00550205 | −0.117117 | 0.981187 | 1.02776 | 1.04843 | 0.99379 | 0.981791 | 1.04324 | 0.982961 | 0.995047 | 1.0643 |
2 | 2 | 5468 | 0.972867 | 0.00356533 | −0.143955 | 1.01458 | 0.988543 | 0.967397 | 1.00424 | 1.01413 | 0.970449 | 1.01147 | 1.00204 | 0.950102 |
3 | 3 | 125 | 0.669711 | 0.0434 | −0.26186 | 1.01252 | 0.471805 | 0.698565 | 1.03749 | 0.990542 | 0.738927 | 1.10606 | 1.09423 | 1.03339 |
Plot the DIA Metrics
[16]:
result.plot(feature_name="EDUCATION")











[16]:
[]
[17]:
# Only plot metric for "Specificity"
result.plot(feature_name="PAY_0", metrics_of_interest="Specificity")

[17]:
[]
[18]:
# Only plot metrics for "N", "Adverse Impact" and "True Positive Rate"
result.plot(feature_name="PAY_0", metrics_of_interest=["N", "Adverse Impact", "True Positive Rate"])



[18]:
[]
Save the explainer log and data
[19]:
# save the explainer log
result.log(path="./dia-demo.log")
[20]:
!head dia-demo.log
[21]:
# save the explainer data
result.zip(file_path="./dia-demo-archive.zip")
[22]:
!unzip -l dia-demo-archive.zip
Archive: dia-demo-archive.zip
Length Date Time Name
--------- ---------- ----- ----
3890 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/result_descriptor.json
117 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_disparate_impact_analysis/text_plain.meta
19 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_disparate_impact_analysis/text_plain/explanation.txt
4078 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/dia_entity.json
2248 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/7/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/7/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/7/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/7/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/8/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/8/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/8/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/8/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/9/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/9/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/9/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/9/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/2/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/2/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/2/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/2/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/5/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/5/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/5/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/5/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/10/cm.jay
2784 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/10/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/10/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/10/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/1/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/1/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/1/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/3/cm.jay
2776 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/3/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/3/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/3/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/6/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/6/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/6/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/6/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/0/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/0/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/0/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/0/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/4/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/4/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/4/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/4/parity.jay
1504 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/2/cm.jay
1928 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/2/disparity.jay
656 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/2/me_smd.jay
2008 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/2/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/1/cm.jay
1928 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/1/disparity.jay
656 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/1/me_smd.jay
2008 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/3/cm.jay
1928 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/3/disparity.jay
656 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/3/me_smd.jay
2008 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/3/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/0/cm.jay
1928 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/0/disparity.jay
656 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/0/me_smd.jay
2008 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/0/parity.jay
2152 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/7/cm.jay
2680 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/7/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/7/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/7/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/8/cm.jay
2680 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/8/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/8/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/8/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/9/cm.jay
2680 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/9/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/9/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/9/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/2/cm.jay
2664 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/2/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/2/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/2/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/5/cm.jay
2680 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/5/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/5/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/5/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/10/cm.jay
2680 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/10/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/10/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/10/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/1/cm.jay
2664 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/1/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/1/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/3/cm.jay
2688 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/3/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/3/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/3/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/6/cm.jay
2680 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/6/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/6/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/6/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/0/cm.jay
2664 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/0/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/0/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/0/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/4/cm.jay
2664 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/4/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/4/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/4/parity.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/7/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/7/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/7/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/7/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/8/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/8/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/8/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/8/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/9/cm.jay
2584 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/9/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/9/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/9/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/2/cm.jay
2552 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/2/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/2/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/2/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/5/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/5/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/5/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/5/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/1/cm.jay
2552 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/1/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/1/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/3/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/3/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/3/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/3/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/6/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/6/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/6/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/6/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/0/cm.jay
2552 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/0/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/0/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/0/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/4/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/4/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/4/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/4/parity.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/7/cm.jay
2576 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/7/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/7/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/7/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/8/cm.jay
2592 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/8/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/8/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/8/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/9/cm.jay
2592 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/9/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/9/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/9/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/2/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/2/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/2/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/2/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/5/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/5/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/5/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/5/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/10/cm.jay
2592 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/10/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/10/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/10/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/1/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/1/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/1/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/3/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/3/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/3/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/3/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/6/cm.jay
2576 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/6/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/6/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/6/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/0/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/0/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/0/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/0/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/4/cm.jay
2568 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/4/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/4/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/4/parity.jay
2248 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/7/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/7/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/7/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/7/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/8/cm.jay
2784 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/8/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/8/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/8/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/9/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/9/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/9/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/9/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/2/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/2/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/2/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/2/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/5/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/5/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/5/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/5/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/10/cm.jay
2776 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/10/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/10/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/10/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/1/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/1/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/1/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/3/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/3/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/3/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/3/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/6/cm.jay
2768 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/6/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/6/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/6/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/0/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/0/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/0/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/0/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/4/cm.jay
2760 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/4/disparity.jay
856 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/4/me_smd.jay
2224 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/4/parity.jay
1800 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/2/cm.jay
2264 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/2/disparity.jay
744 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/2/me_smd.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/2/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/5/cm.jay
2264 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/5/disparity.jay
744 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/5/me_smd.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/5/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/1/cm.jay
2264 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/1/disparity.jay
744 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/1/me_smd.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/3/cm.jay
2264 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/3/disparity.jay
744 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/3/me_smd.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/3/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/6/cm.jay
2280 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/6/disparity.jay
744 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/6/me_smd.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/6/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/0/cm.jay
2264 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/0/disparity.jay
744 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/0/me_smd.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/0/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/4/cm.jay
2272 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/4/disparity.jay
744 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/4/me_smd.jay
2056 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/4/parity.jay
2152 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/7/cm.jay
2664 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/7/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/7/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/7/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/8/cm.jay
2656 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/8/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/8/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/8/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/9/cm.jay
2672 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/9/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/9/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/9/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/2/cm.jay
2648 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/2/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/2/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/2/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/5/cm.jay
2656 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/5/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/5/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/5/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/1/cm.jay
2648 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/1/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/1/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/3/cm.jay
2648 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/3/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/3/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/3/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/6/cm.jay
2656 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/6/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/6/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/6/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/0/cm.jay
2648 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/0/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/0/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/0/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/4/cm.jay
2656 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/4/disparity.jay
824 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/4/me_smd.jay
2208 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/4/parity.jay
1392 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/metrics.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/1/cm.jay
1792 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/1/disparity.jay
600 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/1/me_smd.jay
1984 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/1/parity.jay
304 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/0/cm.jay
1792 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/0/disparity.jay
600 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/0/me_smd.jay
1984 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/0/parity.jay
110 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html.meta
15867 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-true_positive_rate.png
13555 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-n.png
16989 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-false_omissions_rate.png
14767 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-precision.png
15218 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-false_omissions_rate.png
16450 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-false_discovery_rate.png
15255 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-false_omissions_rate.png
14397 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-n.png
14336 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-n.png
14870 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-true_positive_rate.png
14883 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-adverse_impact.png
14398 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-true_positive_rate.png
14627 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-adverse_impact.png
15710 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-true_positive_rate.png
16873 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-false_discovery_rate.png
15736 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-negative_predicted_value.png
15279 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-false_discovery_rate.png
15751 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-adverse_impact.png
13643 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-precision.png
16982 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-false_discovery_rate.png
13261 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-false_omissions_rate.png
15192 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-false_negative_rate.png
14237 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-specificity.png
14495 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-true_positive_rate.png
14368 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-false_discovery_rate.png
15098 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-false_negative_rate.png
15176 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-false_omissions_rate.png
11702 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-specificity.png
12554 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-precision.png
15055 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-accuracy.png
13924 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-n.png
18183 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-false_positive_rate.png
14259 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-specificity.png
14691 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-precision.png
15847 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-true_positive_rate.png
14741 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-false_positive_rate.png
15134 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-adverse_impact.png
15076 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-false_negative_rate.png
13932 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-accuracy.png
16250 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-false_omissions_rate.png
13838 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-precision.png
17735 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-adverse_impact.png
16853 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-false_positive_rate.png
15310 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-false_discovery_rate.png
14982 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-false_omissions_rate.png
17054 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-false_discovery_rate.png
15347 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-false_negative_rate.png
14406 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-n.png
16217 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-false_positive_rate.png
29111 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/explanation.html
13388 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-specificity.png
13915 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-accuracy.png
16176 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-false_omissions_rate.png
14158 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-specificity.png
15004 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-false_positive_rate.png
14172 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-specificity.png
14109 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-specificity.png
15577 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-accuracy.png
18141 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-false_positive_rate.png
15202 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-false_omissions_rate.png
12924 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-accuracy.png
15074 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-false_negative_rate.png
13915 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-accuracy.png
14411 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-n.png
15635 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-false_positive_rate.png
16429 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-adverse_impact.png
15531 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-negative_predicted_value.png
14226 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-precision.png
15597 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-negative_predicted_value.png
14298 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-false_negative_rate.png
15906 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-negative_predicted_value.png
15790 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-negative_predicted_value.png
17393 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-true_positive_rate.png
16560 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-adverse_impact.png
14589 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-accuracy.png
13899 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-accuracy.png
13229 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-n.png
15029 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-false_negative_rate.png
14717 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-precision.png
15757 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-negative_predicted_value.png
16915 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-false_discovery_rate.png
15606 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-accuracy.png
16424 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-true_positive_rate.png
14433 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-n.png
15739 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-negative_predicted_value.png
15492 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-negative_predicted_value.png
13765 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-specificity.png
15021 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-false_positive_rate.png
13748 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-precision.png
14108 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-adverse_impact.png
15098 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-false_negative_rate.png
16390 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-false_positive_rate.png
17928 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-true_positive_rate.png
15177 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-false_negative_rate.png
13677 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-precision.png
17088 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-negative_predicted_value.png
14172 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-specificity.png
15296 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-false_discovery_rate.png
15822 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-adverse_impact.png
14403 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-n.png
2 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/model_problems/problems_and_actions.json
0 2023-03-12 23:07 explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/log/explainer_run_1d88b336-a4d5-4d1a-8e2d-492d577e4096.log
--------- -------
2005483 424 files
[ ]: