Disparate Impact Analysis (DIA) Explainer Demo

This example demonstrates how to interpret a scikit-learn model using the H2O Eval Studio library and retrieve the data and plot the Disparate Impact Analysis.

[1]:
import logging

import pandas
import webbrowser

from h2o_sonar import interpret
from h2o_sonar.lib.api import commons, explainers
from h2o_sonar.explainers.dia_explainer import DiaExplainer
from h2o_sonar.lib.api.models import ModelApi

from sklearn.ensemble import GradientBoostingClassifier
[2]:
results_location = "../../results"

# dataset
dataset_path = "../../data/creditcard.csv"
target_col = "default payment next month"
df = pandas.read_csv(dataset_path)
(X, y) = df.drop(target_col, axis=1), df[target_col]
[3]:
# parameters
interpret.describe_explainer(DiaExplainer)
[3]:
{'id': 'h2o_sonar.explainers.dia_explainer.DiaExplainer',
 'name': 'DiaExplainer',
 'display_name': 'Disparate Impact Analysis',
 'description': 'Disparate Impact Analysis (DIA) is a technique that is used to evaluate fairness. Bias can be introduced to models during the process of collecting, processing, and labeling data as a result, it is important to determine whether a model is harming certain users by making a significant number of biased decisions. DIA typically works by comparing aggregate measurements of unprivileged groups to a privileged group. For instance, the proportion of the unprivileged group that receives the potentially harmful outcome is divided by the proportion of the privileged group that receives the same outcome - the resulting proportion is then used to determine whether the model is biased.',
 'model_types': ['iid', 'time_series'],
 'can_explain': ['regression', 'binomial'],
 'explanation_scopes': ['global_scope'],
 'explanations': [{'explanation_type': 'global-disparate-impact-analysis',
   'name': 'DiaExplanation',
   'category': None,
   'scope': 'global',
   'has_local': None,
   'formats': []}],
 'parameters': [{'name': 'dia_cols',
   'description': 'List of features for which to compute DIA.',
   'comment': '',
   'type': 'list',
   'val': None,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'cut_off',
   'description': 'Cut off.',
   'comment': '',
   'type': 'float',
   'val': 0.0,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'maximize_metric',
   'description': 'Maximize metric.',
   'comment': '',
   'type': 'str',
   'val': 'F1',
   'predefined': ['F1', 'F05', 'F2', 'MCC'],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'max_cardinality',
   'description': 'Max cardinality for categorical variables.',
   'comment': '',
   'type': 'int',
   'val': 10,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'min_cardinality',
   'description': 'Minimum cardinality for categorical variables.',
   'comment': '',
   'type': 'int',
   'val': 2,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'num_card',
   'description': 'Max cardinality for numeric variables to be considered categorical.',
   'comment': '',
   'type': 'int',
   'val': 25,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''}],
 'keywords': ['run-by-default', 'explains-fairness', 'h2o-sonar']}

Interpret

[4]:
# scikit-learn model
gradient_booster = GradientBoostingClassifier(learning_rate=0.1)
gradient_booster.fit(X, y)

# explainable model
model = ModelApi().create_model(target_col=target_col, model_src=gradient_booster, used_features=X.columns.to_list())

interpretation = interpret.run_interpretation(
    dataset=df,
    model=model,
    target_col=target_col,
    results_location=results_location,
    log_level=logging.INFO,
    explainers=[
        commons.ExplainerToRun(
            explainer_id=DiaExplainer.explainer_id(),
            params="",
        )
    ]
)
/home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
Preparing and checking DIA features (None): dataset=     | BILL_AMT5  LIMIT_BAL  default payment next month  PAY_5     ID  BILL_AMT6    AGE  BILL_AMT1  PAY_0  PAY_AMT2  …  BILL_AMT3  PAY_AMT5    SEX  PAY_6  PAY_2
     |     int64      int64                       int64  int64  int64      int64  int64      int64  int64     int64         int64     int64  int64  int64  int64
---- + ---------  ---------  --------------------------  -----  -----  ---------  -----  ---------  -----  --------     ---------  --------  -----  -----  -----
   0 |         0      20000                           1     -2      1          0     24       3913     -2       689  …        689         0      2     -2      2
   1 |      3455     120000                           1      0      2       3261     26       2682     -1      1000  …       2682         0      2      2      2
   2 |     14948      90000                           0      0      3      15549     34      29239      0      1500  …      13559      1000      2      0      0
   3 |     28959      50000                           0      0      4      29547     37      46990      1      2019  …      49291      1069      2      0      0
   4 |     19146      50000                           0      0      5      19131     57       8617      2     36681  …      35835       689      1      0      0
   5 |     19619      50000                           0      0      6      20024     37      64400      3      1815  …      57608      1000      1      0      0
   6 |    483003     500000                           0      0      7     473944     29     367965      4     40000  …     445007     13750      1      0      0
   7 |      -159     100000                           0      0      8        567     23      11876      5       601  …        601      1687      2     -1     -1
   8 |     11793     140000                           0      0      9       3719     28      11285      6         0  …      12108      1000      2      0      0
   9 |     13007      20000                           0     -1     10      13912     35          0      7         0  …          0      1122      1     -1     -2
  10 |      1828     200000                           0      0     11       3731     34      11073      8        12  …       5535      3738      2     -1      0
  11 |     22287     260000                           0     -1     12      13668     51      12261     -1      9966  …       9966         0      2      2     -1
  12 |      6500     630000                           0     -1     13       2870     41      12137     -1      6500  …       6500      2870      2     -1      0
  13 |     36137      70000                           1      0     14      36894     30      65802      1         0  …      65701      1500      1      2      2
  14 |     56875     250000                           0      0     15      55512     29      70887      0      3000  …      63561      3000      1      0      0
   … |         …          …                           …      …      …          …      …          …      …         …  …          …         …      …      …      …
9995 |         0     140000                           0     -2   9996          0     31          0      1         0  …          0         0      2     -2     -2
9996 |         0      80000                           0     -2   9997          0     37       3946     -2         0  …          0         0      2     -2     -2
9997 |    176717     200000                           0      0   9998     168431     44     138877      0      5000  …     142520     10017      1      0      0
9998 |         0      80000                           1     -2   9999          0     26        780     -1         0  …          0         0      2     -2      2
9999 |     19255     230000                           0      0  10000      17479     36      19505      0      3000  …      19750      3000      1      0      0
[10000 rows x 25 columns]
 dataset_meta={
  "shape": "(10000, 25)",
  "row_count": 10000,
  "column_names": [
    "ID",
    "LIMIT_BAL",
    "SEX",
    "EDUCATION",
    "MARRIAGE",
    "AGE",
    "PAY_0",
    "PAY_2",
    "PAY_3",
    "PAY_4",
    "PAY_5",
    "PAY_6",
    "BILL_AMT1",
    "BILL_AMT2",
    "BILL_AMT3",
    "BILL_AMT4",
    "BILL_AMT5",
    "BILL_AMT6",
    "PAY_AMT1",
    "PAY_AMT2",
    "PAY_AMT3",
    "PAY_AMT4",
    "PAY_AMT5",
    "PAY_AMT6",
    "default payment next month"
  ],
  "column_types": [
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int"
  ],
  "column_uniques": [
    10000,
    72,
    2,
    7,
    4,
    54,
    11,
    11,
    11,
    11,
    10,
    10,
    8371,
    8215,
    8072,
    7913,
    7764,
    7550,
    3763,
    3581,
    3305,
    3247,
    3258,
    3174,
    2
  ],
  "columns_cat": [],
  "columns_num": [],
  "file_path": "",
  "file_name": "",
  "file_size": 0,
  "missing_values": [
    "",
    "?",
    "None",
    "nan",
    "NA",
    "N/A",
    "unknown",
    "inf",
    "-inf",
    "1.7976931348623157e+308",
    "-1.7976931348623157e+308"
  ],
  "columns_meta": [
    {
      "name": "ID",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": true,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10000,
      "frequency": 0,
      "unique": 10000,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "LIMIT_BAL",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 72,
      "frequency": 0,
      "unique": 72,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "SEX",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "EDUCATION",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7,
      "frequency": 0,
      "unique": 7,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "MARRIAGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 4,
      "frequency": 0,
      "unique": 4,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "AGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 54,
      "frequency": 0,
      "unique": 54,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_0",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8371,
      "frequency": 0,
      "unique": 8371,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8215,
      "frequency": 0,
      "unique": 8215,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8072,
      "frequency": 0,
      "unique": 8072,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7913,
      "frequency": 0,
      "unique": 7913,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7764,
      "frequency": 0,
      "unique": 7764,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7550,
      "frequency": 0,
      "unique": 7550,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3763,
      "frequency": 0,
      "unique": 3763,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3581,
      "frequency": 0,
      "unique": 3581,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3305,
      "frequency": 0,
      "unique": 3305,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3247,
      "frequency": 0,
      "unique": 3247,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3258,
      "frequency": 0,
      "unique": 3258,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3174,
      "frequency": 0,
      "unique": 3174,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "default payment next month",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    }
  ]
}
Using dataset ENTITY to prepare DIA features: column_names=['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default payment next month'] column_uniques=[10000, 72, 2, 7, 4, 54, 11, 11, 11, 11, 10, 10, 8371, 8215, 8072, 7913, 7764, 7550, 3763, 3581, 3305, 3247, 3258, 3174, 2]
DIA group columns prepared using dataset ENTITY: {'MARRIAGE', 'PAY_0', 'default payment next month', 'PAY_5', 'PAY_4', 'PAY_3', 'SEX', 'PAY_6', 'EDUCATION', 'PAY_2'}
DIA group columns to SKIP: {'model_pred', 'default payment next month'}
DIA group columns as BOOLs: [<h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5880>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5940>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c59a0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5a00>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5a60>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5ac0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5b20>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5b80>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f1d648c5be0>]
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
../_images/notebooks_h2o-sonar-dia-explainer_5_3.png
../_images/notebooks_h2o-sonar-dia-explainer_5_4.png
../_images/notebooks_h2o-sonar-dia-explainer_5_5.png
../_images/notebooks_h2o-sonar-dia-explainer_5_6.png
../_images/notebooks_h2o-sonar-dia-explainer_5_7.png
../_images/notebooks_h2o-sonar-dia-explainer_5_8.png
../_images/notebooks_h2o-sonar-dia-explainer_5_9.png
../_images/notebooks_h2o-sonar-dia-explainer_5_10.png
../_images/notebooks_h2o-sonar-dia-explainer_5_11.png
../_images/notebooks_h2o-sonar-dia-explainer_5_12.png
../_images/notebooks_h2o-sonar-dia-explainer_5_13.png
../_images/notebooks_h2o-sonar-dia-explainer_5_14.png
../_images/notebooks_h2o-sonar-dia-explainer_5_15.png
../_images/notebooks_h2o-sonar-dia-explainer_5_16.png
../_images/notebooks_h2o-sonar-dia-explainer_5_17.png
../_images/notebooks_h2o-sonar-dia-explainer_5_18.png
../_images/notebooks_h2o-sonar-dia-explainer_5_19.png
../_images/notebooks_h2o-sonar-dia-explainer_5_20.png
../_images/notebooks_h2o-sonar-dia-explainer_5_21.png
../_images/notebooks_h2o-sonar-dia-explainer_5_22.png
../_images/notebooks_h2o-sonar-dia-explainer_5_23.png
../_images/notebooks_h2o-sonar-dia-explainer_5_24.png
../_images/notebooks_h2o-sonar-dia-explainer_5_25.png
../_images/notebooks_h2o-sonar-dia-explainer_5_26.png
../_images/notebooks_h2o-sonar-dia-explainer_5_27.png
../_images/notebooks_h2o-sonar-dia-explainer_5_28.png
../_images/notebooks_h2o-sonar-dia-explainer_5_29.png
../_images/notebooks_h2o-sonar-dia-explainer_5_30.png
../_images/notebooks_h2o-sonar-dia-explainer_5_31.png
../_images/notebooks_h2o-sonar-dia-explainer_5_32.png
../_images/notebooks_h2o-sonar-dia-explainer_5_33.png
../_images/notebooks_h2o-sonar-dia-explainer_5_34.png
../_images/notebooks_h2o-sonar-dia-explainer_5_35.png
../_images/notebooks_h2o-sonar-dia-explainer_5_36.png
../_images/notebooks_h2o-sonar-dia-explainer_5_37.png
../_images/notebooks_h2o-sonar-dia-explainer_5_38.png
../_images/notebooks_h2o-sonar-dia-explainer_5_39.png
../_images/notebooks_h2o-sonar-dia-explainer_5_40.png
../_images/notebooks_h2o-sonar-dia-explainer_5_41.png
../_images/notebooks_h2o-sonar-dia-explainer_5_42.png
../_images/notebooks_h2o-sonar-dia-explainer_5_43.png
../_images/notebooks_h2o-sonar-dia-explainer_5_44.png
../_images/notebooks_h2o-sonar-dia-explainer_5_45.png
../_images/notebooks_h2o-sonar-dia-explainer_5_46.png
../_images/notebooks_h2o-sonar-dia-explainer_5_47.png
../_images/notebooks_h2o-sonar-dia-explainer_5_48.png
../_images/notebooks_h2o-sonar-dia-explainer_5_49.png
../_images/notebooks_h2o-sonar-dia-explainer_5_50.png
../_images/notebooks_h2o-sonar-dia-explainer_5_51.png
../_images/notebooks_h2o-sonar-dia-explainer_5_52.png
../_images/notebooks_h2o-sonar-dia-explainer_5_53.png
../_images/notebooks_h2o-sonar-dia-explainer_5_54.png
../_images/notebooks_h2o-sonar-dia-explainer_5_55.png
../_images/notebooks_h2o-sonar-dia-explainer_5_56.png
../_images/notebooks_h2o-sonar-dia-explainer_5_57.png
../_images/notebooks_h2o-sonar-dia-explainer_5_58.png
../_images/notebooks_h2o-sonar-dia-explainer_5_59.png
../_images/notebooks_h2o-sonar-dia-explainer_5_60.png
../_images/notebooks_h2o-sonar-dia-explainer_5_61.png
../_images/notebooks_h2o-sonar-dia-explainer_5_62.png
../_images/notebooks_h2o-sonar-dia-explainer_5_63.png
../_images/notebooks_h2o-sonar-dia-explainer_5_64.png
../_images/notebooks_h2o-sonar-dia-explainer_5_65.png
../_images/notebooks_h2o-sonar-dia-explainer_5_66.png
../_images/notebooks_h2o-sonar-dia-explainer_5_67.png
../_images/notebooks_h2o-sonar-dia-explainer_5_68.png
../_images/notebooks_h2o-sonar-dia-explainer_5_69.png
../_images/notebooks_h2o-sonar-dia-explainer_5_70.png
../_images/notebooks_h2o-sonar-dia-explainer_5_71.png
../_images/notebooks_h2o-sonar-dia-explainer_5_72.png
../_images/notebooks_h2o-sonar-dia-explainer_5_73.png
../_images/notebooks_h2o-sonar-dia-explainer_5_74.png
../_images/notebooks_h2o-sonar-dia-explainer_5_75.png
../_images/notebooks_h2o-sonar-dia-explainer_5_76.png
../_images/notebooks_h2o-sonar-dia-explainer_5_77.png
../_images/notebooks_h2o-sonar-dia-explainer_5_78.png
../_images/notebooks_h2o-sonar-dia-explainer_5_79.png
../_images/notebooks_h2o-sonar-dia-explainer_5_80.png
../_images/notebooks_h2o-sonar-dia-explainer_5_81.png
../_images/notebooks_h2o-sonar-dia-explainer_5_82.png
../_images/notebooks_h2o-sonar-dia-explainer_5_83.png
../_images/notebooks_h2o-sonar-dia-explainer_5_84.png
../_images/notebooks_h2o-sonar-dia-explainer_5_85.png
../_images/notebooks_h2o-sonar-dia-explainer_5_86.png
../_images/notebooks_h2o-sonar-dia-explainer_5_87.png
../_images/notebooks_h2o-sonar-dia-explainer_5_88.png
../_images/notebooks_h2o-sonar-dia-explainer_5_89.png
../_images/notebooks_h2o-sonar-dia-explainer_5_90.png
../_images/notebooks_h2o-sonar-dia-explainer_5_91.png
../_images/notebooks_h2o-sonar-dia-explainer_5_92.png
../_images/notebooks_h2o-sonar-dia-explainer_5_93.png
../_images/notebooks_h2o-sonar-dia-explainer_5_94.png
../_images/notebooks_h2o-sonar-dia-explainer_5_95.png
../_images/notebooks_h2o-sonar-dia-explainer_5_96.png
../_images/notebooks_h2o-sonar-dia-explainer_5_97.png
../_images/notebooks_h2o-sonar-dia-explainer_5_98.png
../_images/notebooks_h2o-sonar-dia-explainer_5_99.png
../_images/notebooks_h2o-sonar-dia-explainer_5_100.png
../_images/notebooks_h2o-sonar-dia-explainer_5_101.png

Interact with the Explainer Result

[5]:
# retrieve the result
result = interpretation.get_explainer_result(DiaExplainer.explainer_id())
[6]:
# open interpretation HTML report in web browser
webbrowser.open(interpretation.result.get_html_report_location())
[6]:
True
[7]:
# summary
result.summary()
[7]:
{'id': 'h2o_sonar.explainers.dia_explainer.DiaExplainer',
 'name': 'DiaExplainer',
 'display_name': 'Disparate Impact Analysis',
 'description': 'Disparate Impact Analysis (DIA) is a technique that is used to evaluate fairness. Bias can be introduced to models during the process of collecting, processing, and labeling data as a result, it is important to determine whether a model is harming certain users by making a significant number of biased decisions. DIA typically works by comparing aggregate measurements of unprivileged groups to a privileged group. For instance, the proportion of the unprivileged group that receives the potentially harmful outcome is divided by the proportion of the privileged group that receives the same outcome - the resulting proportion is then used to determine whether the model is biased.',
 'model_types': ['iid', 'time_series'],
 'can_explain': ['regression', 'binomial'],
 'explanation_scopes': ['global_scope'],
 'explanations': [{'explanation_type': 'global-disparate-impact-analysis',
   'name': 'Disparate Impact Analysis',
   'category': 'DAI MODEL',
   'scope': 'global',
   'has_local': None,
   'formats': ['text/plain']},
  {'explanation_type': 'global-html-fragment',
   'name': 'Disparate Impact Analysis',
   'category': 'DAI MODEL',
   'scope': 'global',
   'has_local': None,
   'formats': ['text/html']}],
 'parameters': [{'name': 'dia_cols',
   'description': 'List of features for which to compute DIA.',
   'comment': '',
   'type': 'list',
   'val': None,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'cut_off',
   'description': 'Cut off.',
   'comment': '',
   'type': 'float',
   'val': 0.0,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'maximize_metric',
   'description': 'Maximize metric.',
   'comment': '',
   'type': 'str',
   'val': 'F1',
   'predefined': ['F1', 'F05', 'F2', 'MCC'],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'max_cardinality',
   'description': 'Max cardinality for categorical variables.',
   'comment': '',
   'type': 'int',
   'val': 10,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'min_cardinality',
   'description': 'Minimum cardinality for categorical variables.',
   'comment': '',
   'type': 'int',
   'val': 2,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''},
  {'name': 'num_card',
   'description': 'Max cardinality for numeric variables to be considered categorical.',
   'comment': '',
   'type': 'int',
   'val': 25,
   'predefined': [],
   'tags': [],
   'min_': 0.0,
   'max_': 0.0,
   'category': ''}],
 'keywords': ['run-by-default', 'explains-fairness', 'h2o-sonar']}
[8]:
# parameters
result.params()
[8]:
{'dia_cols': ['MARRIAGE',
  'PAY_0',
  'PAY_5',
  'PAY_4',
  'PAY_3',
  'SEX',
  'PAY_6',
  'EDUCATION',
  'PAY_2'],
 'cut_off': 0.0,
 'maximize_metric': 'F1',
 'max_cardinality': 10,
 'min_cardinality': 2,
 'num_card': 25}

Display the DIA data

[9]:
# Print method help
import pprint
pprint.pprint(result.help())
{'methods': {'data': {'doc': '',
                      'parameters': [{'default': '',
                                      'doc': 'The name of the feature whose '
                                             'data we want to retrieve.',
                                      'name': 'feature_name',
                                      'required': True,
                                      'type': 'str'},
                                     {'default': '',
                                      'doc': 'The category of data to be '
                                             'retrieve. This can be one of the '
                                             "following: 'metrics', 'cm', "
                                             "'me_smd', 'disparity' and "
                                             "'parity'",
                                      'name': 'category',
                                      'required': True,
                                      'type': 'str'},
                                     {'default': 'The first reference level '
                                                 'will be selected from the '
                                                 'set of available reference '
                                                 'levels.',
                                      'doc': 'The reference levels for each '
                                             'categorical data',
                                      'name': 'ref_level',
                                      'required': False,
                                      'type': 'str | int'}]}}}
[10]:
result.data(feature_name="MARRIAGE", category=result.DiaCategory.DIA_METRICS)
[10]:
GroupsNAdverse ImpactAccuracyTrue Positive RatePrecisionSpecificityNegative Predicted ValueFalse Positive RateFalse Discovery RateFalse Negative RateFalse Omissions Rate
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
00170.13140.71110.1513940.2602740.8744350.77930.1255650.7397260.8486060.2207
1143900.1369020.6977220.1555980.2728790.8690050.765110.1309950.7271210.8444020.23489
2254680.1278350.721470.149660.2517880.8781450.7903120.1218550.7482120.850340.209688
331250.0880.720.07142860.1818180.9072160.771930.09278350.8181820.9285710.22807
[11]:
result.data(feature_name="EDUCATION", category=result.DiaCategory.DIA_CATEGORY_DISPARITY, ref_level="3")
[11]:
GroupsNAdverse Impact DisparityMarginal ErrorStandardized Mean DifferenceAccuracy DisparityTrue Positive Rate DisparityPrecision DisparitySpecificity DisparityNegative Predicted Value DisparityFalse Positive Rate DisparityFalse Discovery Rate DisparityFalse Negative Rate DisparityFalse Omissions Rate Disparity
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
0031.14795−0.01693460.6478181.015861.196020.9473970.9830191.032221.136751.019930.9715920.900712
1137141.4137−0.04735470.1401631.023921.651350.9811650.9562581.063731.352261.007130.9056010.803646
2245880.9711190.00330586−0.009784881.012270.9337030.9135691.001661.014360.9866641.032741.009610.95574
331590100111111111
44261.34404−0.03938080.1165611.15385000.9443091.264351.448481.378791.144930.185507
55691.51935−0.05944760.1759561.159423.160.6066670.9485241.254841.414541.148990.6869570.214798
66103.49451−0.2855350.8451410.857143NA00.6745061.324553.621211.37879NA0
[12]:
result.data(feature_name="PAY_4", category=result.DiaCategory.DIA_CATEGORY_CM, ref_level=-1)
[12]:
actual1actual0
▪▪▪▪▪▪▪▪
049208
12871436
[13]:
result.data(feature_name="SEX", category=result.DiaCategory.DIA_CATEGORY_ME_SMD)
[13]:
GroupsNMarginal ErrorStandardized Mean Difference
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
01420600
125794−0.01012260.0299615
[14]:
result.data(feature_name="PAY_2", category=result.DiaCategory.DIA_CATEGORY_PARITY)
[14]:
GroupsNAdverse Impact ParityAccuracy ParityTrue Positive Rate ParityPrecision ParitySpecificity ParityNegative Predicted Value ParityFalse Positive Rate ParityFalse Discovery Rate ParityType I ParityType II ParityEqualized OddsSupervised FairnessOverall Fairness
▪▪▪▪▪▪▪▪▪▪▪▪
0-212181111111111111
1-121710100010100000
2051470101010100000
3180100010000000
4212940000000000000
531060000000000000
64250100000000000
75110000000000000
8670000000000000
97120100000000000
10810000010000000
11all100000000000000000
[15]:
result.data(feature_name="MARRIAGE", category=result.DiaCategory.DIA_CATEGORY_DISPARITY)
[15]:
GroupsNAdverse Impact DisparityMarginal ErrorStandardized Mean DifferenceAccuracy DisparityTrue Positive Rate DisparityPrecision DisparitySpecificity DisparityNegative Predicted Value DisparityFalse Positive Rate DisparityFalse Discovery Rate DisparityFalse Negative Rate DisparityFalse Omissions Rate Disparity
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
0017100111111111
1143901.04187−0.00550205−0.1171170.9811871.027761.048430.993790.9817911.043240.9829610.9950471.0643
2254680.9728670.00356533−0.1439551.014580.9885430.9673971.004241.014130.9704491.011471.002040.950102
331250.6697110.0434−0.261861.012520.4718050.6985651.037490.9905420.7389271.106061.094231.03339

Plot the DIA Metrics

[16]:
result.plot(feature_name="EDUCATION")
../_images/notebooks_h2o-sonar-dia-explainer_20_0.png
../_images/notebooks_h2o-sonar-dia-explainer_20_1.png
../_images/notebooks_h2o-sonar-dia-explainer_20_2.png
../_images/notebooks_h2o-sonar-dia-explainer_20_3.png
../_images/notebooks_h2o-sonar-dia-explainer_20_4.png
../_images/notebooks_h2o-sonar-dia-explainer_20_5.png
../_images/notebooks_h2o-sonar-dia-explainer_20_6.png
../_images/notebooks_h2o-sonar-dia-explainer_20_7.png
../_images/notebooks_h2o-sonar-dia-explainer_20_8.png
../_images/notebooks_h2o-sonar-dia-explainer_20_9.png
../_images/notebooks_h2o-sonar-dia-explainer_20_10.png
[16]:
[]
[17]:
# Only plot metric for "Specificity"
result.plot(feature_name="PAY_0", metrics_of_interest="Specificity")
../_images/notebooks_h2o-sonar-dia-explainer_21_0.png
[17]:
[]
[18]:
# Only plot metrics for "N", "Adverse Impact" and "True Positive Rate"
result.plot(feature_name="PAY_0", metrics_of_interest=["N", "Adverse Impact", "True Positive Rate"])
../_images/notebooks_h2o-sonar-dia-explainer_22_0.png
../_images/notebooks_h2o-sonar-dia-explainer_22_1.png
../_images/notebooks_h2o-sonar-dia-explainer_22_2.png
[18]:
[]

Save the explainer log and data

[19]:
# save the explainer log
result.log(path="./dia-demo.log")
[20]:
!head dia-demo.log
[21]:
# save the explainer data
result.zip(file_path="./dia-demo-archive.zip")
[22]:
!unzip -l dia-demo-archive.zip
Archive:  dia-demo-archive.zip
  Length      Date    Time    Name
---------  ---------- -----   ----
     3890  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/result_descriptor.json
      117  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_disparate_impact_analysis/text_plain.meta
       19  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_disparate_impact_analysis/text_plain/explanation.txt
     4078  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/dia_entity.json
     2248  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/7/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/7/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/7/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/7/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/8/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/8/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/8/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/8/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/9/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/9/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/9/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/9/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/2/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/2/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/2/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/2/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/5/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/5/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/5/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/5/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/10/cm.jay
     2784  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/10/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/10/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/10/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/1/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/1/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/1/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/3/cm.jay
     2776  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/3/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/3/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/3/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/6/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/6/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/6/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/6/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/0/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/0/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/0/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/0/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/4/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/4/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/4/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_3/4/parity.jay
     1504  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/2/cm.jay
     1928  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/2/disparity.jay
      656  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/2/me_smd.jay
     2008  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/2/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/1/cm.jay
     1928  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/1/disparity.jay
      656  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/1/me_smd.jay
     2008  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/3/cm.jay
     1928  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/3/disparity.jay
      656  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/3/me_smd.jay
     2008  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/3/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/0/cm.jay
     1928  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/0/disparity.jay
      656  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/0/me_smd.jay
     2008  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/MARRIAGE/0/parity.jay
     2152  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/7/cm.jay
     2680  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/7/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/7/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/7/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/8/cm.jay
     2680  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/8/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/8/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/8/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/9/cm.jay
     2680  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/9/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/9/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/9/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/2/cm.jay
     2664  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/2/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/2/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/2/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/5/cm.jay
     2680  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/5/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/5/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/5/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/10/cm.jay
     2680  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/10/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/10/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/10/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/1/cm.jay
     2664  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/1/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/1/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/3/cm.jay
     2688  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/3/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/3/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/3/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/6/cm.jay
     2680  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/6/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/6/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/6/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/0/cm.jay
     2664  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/0/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/0/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/0/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/4/cm.jay
     2664  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/4/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/4/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_4/4/parity.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/7/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/7/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/7/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/7/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/8/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/8/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/8/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/8/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/9/cm.jay
     2584  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/9/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/9/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/9/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/2/cm.jay
     2552  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/2/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/2/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/2/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/5/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/5/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/5/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/5/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/1/cm.jay
     2552  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/1/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/1/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/3/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/3/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/3/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/3/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/6/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/6/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/6/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/6/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/0/cm.jay
     2552  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/0/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/0/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/0/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/4/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/4/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/4/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_6/4/parity.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/7/cm.jay
     2576  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/7/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/7/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/7/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/8/cm.jay
     2592  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/8/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/8/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/8/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/9/cm.jay
     2592  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/9/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/9/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/9/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/2/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/2/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/2/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/2/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/5/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/5/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/5/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/5/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/10/cm.jay
     2592  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/10/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/10/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/10/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/1/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/1/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/1/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/3/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/3/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/3/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/3/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/6/cm.jay
     2576  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/6/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/6/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/6/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/0/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/0/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/0/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/0/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/4/cm.jay
     2568  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/4/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/4/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_0/4/parity.jay
     2248  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/7/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/7/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/7/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/7/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/8/cm.jay
     2784  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/8/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/8/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/8/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/9/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/9/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/9/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/9/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/2/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/2/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/2/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/2/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/5/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/5/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/5/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/5/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/10/cm.jay
     2776  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/10/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/10/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/10/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/1/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/1/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/1/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/3/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/3/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/3/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/3/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/6/cm.jay
     2768  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/6/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/6/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/6/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/0/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/0/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/0/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/0/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/4/cm.jay
     2760  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/4/disparity.jay
      856  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/4/me_smd.jay
     2224  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_2/4/parity.jay
     1800  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/2/cm.jay
     2264  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/2/disparity.jay
      744  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/2/me_smd.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/2/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/5/cm.jay
     2264  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/5/disparity.jay
      744  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/5/me_smd.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/5/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/1/cm.jay
     2264  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/1/disparity.jay
      744  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/1/me_smd.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/3/cm.jay
     2264  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/3/disparity.jay
      744  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/3/me_smd.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/3/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/6/cm.jay
     2280  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/6/disparity.jay
      744  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/6/me_smd.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/6/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/0/cm.jay
     2264  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/0/disparity.jay
      744  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/0/me_smd.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/0/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/4/cm.jay
     2272  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/4/disparity.jay
      744  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/4/me_smd.jay
     2056  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/EDUCATION/4/parity.jay
     2152  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/7/cm.jay
     2664  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/7/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/7/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/7/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/8/cm.jay
     2656  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/8/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/8/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/8/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/9/cm.jay
     2672  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/9/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/9/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/9/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/2/cm.jay
     2648  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/2/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/2/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/2/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/5/cm.jay
     2656  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/5/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/5/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/5/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/1/cm.jay
     2648  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/1/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/1/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/3/cm.jay
     2648  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/3/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/3/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/3/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/6/cm.jay
     2656  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/6/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/6/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/6/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/0/cm.jay
     2648  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/0/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/0/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/0/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/4/cm.jay
     2656  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/4/disparity.jay
      824  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/4/me_smd.jay
     2208  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/PAY_5/4/parity.jay
     1392  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/metrics.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/1/cm.jay
     1792  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/1/disparity.jay
      600  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/1/me_smd.jay
     1984  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/1/parity.jay
      304  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/0/cm.jay
     1792  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/0/disparity.jay
      600  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/0/me_smd.jay
     1984  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/work/SEX/0/parity.jay
      110  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html.meta
    15867  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-true_positive_rate.png
    13555  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-n.png
    16989  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-false_omissions_rate.png
    14767  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-precision.png
    15218  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-false_omissions_rate.png
    16450  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-false_discovery_rate.png
    15255  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-false_omissions_rate.png
    14397  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-n.png
    14336  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-n.png
    14870  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-true_positive_rate.png
    14883  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-adverse_impact.png
    14398  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-true_positive_rate.png
    14627  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-adverse_impact.png
    15710  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-true_positive_rate.png
    16873  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-false_discovery_rate.png
    15736  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-negative_predicted_value.png
    15279  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-false_discovery_rate.png
    15751  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-adverse_impact.png
    13643  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-precision.png
    16982  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-false_discovery_rate.png
    13261  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-false_omissions_rate.png
    15192  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-false_negative_rate.png
    14237  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-specificity.png
    14495  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-true_positive_rate.png
    14368  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-false_discovery_rate.png
    15098  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-false_negative_rate.png
    15176  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-false_omissions_rate.png
    11702  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-specificity.png
    12554  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-precision.png
    15055  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-accuracy.png
    13924  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-n.png
    18183  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-false_positive_rate.png
    14259  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-specificity.png
    14691  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-precision.png
    15847  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-true_positive_rate.png
    14741  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-false_positive_rate.png
    15134  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-adverse_impact.png
    15076  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-false_negative_rate.png
    13932  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-accuracy.png
    16250  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-false_omissions_rate.png
    13838  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-precision.png
    17735  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-adverse_impact.png
    16853  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-false_positive_rate.png
    15310  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-false_discovery_rate.png
    14982  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-false_omissions_rate.png
    17054  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-false_discovery_rate.png
    15347  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-false_negative_rate.png
    14406  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-n.png
    16217  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-false_positive_rate.png
    29111  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/explanation.html
    13388  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-specificity.png
    13915  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-accuracy.png
    16176  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-false_omissions_rate.png
    14158  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-specificity.png
    15004  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-false_positive_rate.png
    14172  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-specificity.png
    14109  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-specificity.png
    15577  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-accuracy.png
    18141  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-false_positive_rate.png
    15202  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-false_omissions_rate.png
    12924  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-accuracy.png
    15074  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-false_negative_rate.png
    13915  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-accuracy.png
    14411  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-n.png
    15635  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-false_positive_rate.png
    16429  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-adverse_impact.png
    15531  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-negative_predicted_value.png
    14226  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-precision.png
    15597  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-negative_predicted_value.png
    14298  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-false_negative_rate.png
    15906  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-negative_predicted_value.png
    15790  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-negative_predicted_value.png
    17393  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-true_positive_rate.png
    16560  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-adverse_impact.png
    14589  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-accuracy.png
    13899  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-accuracy.png
    13229  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-n.png
    15029  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-5-false_negative_rate.png
    14717  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-precision.png
    15757  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-negative_predicted_value.png
    16915  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-false_discovery_rate.png
    15606  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-accuracy.png
    16424  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-3-true_positive_rate.png
    14433  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-n.png
    15739  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-negative_predicted_value.png
    15492  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-negative_predicted_value.png
    13765  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-specificity.png
    15021  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-false_positive_rate.png
    13748  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-2-precision.png
    14108  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-adverse_impact.png
    15098  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-false_negative_rate.png
    16390  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-false_positive_rate.png
    17928  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-true_positive_rate.png
    15177  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-1-false_negative_rate.png
    13677  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-precision.png
    17088  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-0-negative_predicted_value.png
    14172  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-8-specificity.png
    15296  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-7-false_discovery_rate.png
    15822  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-6-adverse_impact.png
    14403  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/global_html_fragment/text_html/dia-4-n.png
        2  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/model_problems/problems_and_actions.json
        0  2023-03-12 23:07   explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_1d88b336-a4d5-4d1a-8e2d-492d577e4096/log/explainer_run_1d88b336-a4d5-4d1a-8e2d-492d577e4096.log
---------                     -------
  2005483                     424 files
[ ]: