H2O Eval Studio Demo of Scikit-learn Models

[1]:
import pandas
import webbrowser

from sklearn.ensemble import GradientBoostingClassifier

from h2o_sonar import interpret
from h2o_sonar.lib.api.models import ExplainableModel
[2]:
# dataset
dataset_path = "../../data/creditcard.csv"
df = pandas.read_csv(dataset_path)

# directory where to store interpretation results
results_location = "../../results"
[3]:
# Set X and y
target_col = "default payment next month"
X, y = df.drop(target_col,axis=1), df[target_col]
[4]:
# Build model
gradient_booster = GradientBoostingClassifier(learning_rate=0.1)
gradient_booster.fit(X, y)
[4]:
GradientBoostingClassifier()
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
[5]:
# Run interpretation
interpretation = interpret.run_interpretation(
    dataset=dataset_path,
    model=gradient_booster,
    target_col=target_col,
    results_location=results_location,
    used_features=list(X.columns),
)
/home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
Preparing and checking DIA features (None): dataset=     |   SEX  PAY_AMT4  PAY_0     ID  MARRIAGE  LIMIT_BAL  BILL_AMT3  default payment next month  BILL_AMT5  PAY_AMT3  …  PAY_2  EDUCATION  BILL_AMT1  PAY_AMT1  PAY_AMT5
     | int32     int32  int32  int32     int32      int32      int32                        int8      int32     int32     int32      int32      int32     int32     int32
---- + -----  --------  -----  -----  --------  ---------  ---------  --------------------------  ---------  --------     -----  ---------  ---------  --------  --------
   0 |     2         0     -2      1         1      20000        689                           1          0         0  …      2          2       3913         0         0
   1 |     2      1000     -1      2         2     120000       2682                           1       3455      1000  …      2          2       2682         0         0
   2 |     2      1000      0      3         2      90000      13559                           0      14948      1000  …      0          2      29239      1518      1000
   3 |     2      1100      1      4         1      50000      49291                           0      28959      1200  …      0          2      46990      2000      1069
   4 |     1      9000      2      5         1      50000      35835                           0      19146     10000  …      0          2       8617      2000       689
   5 |     1      1000      3      6         2      50000      57608                           0      19619       657  …      0          1      64400      2500      1000
   6 |     1     20239      4      7         2     500000     445007                           0     483003     38000  …      0          1     367965     55000     13750
   7 |     2       581      5      8         2     100000        601                           0       -159         0  …     -1          2      11876       380      1687
   8 |     2      1000      6      9         1     140000      12108                           0      11793       432  …      0          3      11285      3329      1000
   9 |     1     13007      7     10         2      20000          0                           0      13007         0  …     -2          3          0         0      1122
  10 |     2       300      8     11         2     200000       5535                           0       1828        50  …      0          3      11073      2306      3738
  11 |     2     22301     -1     12         2     260000       9966                           0      22287      8583  …     -1          1      12261     21818         0
  12 |     2      6500     -1     13         2     630000       6500                           0       6500      6500  …      0          2      12137      1000      2870
  13 |     1      3000      1     14         2      70000      65701                           1      36137      3000  …      2          2      65802      3200      1500
  14 |     1      3000      0     15         2     250000      63561                           0      56875      3000  …      0          1      70887      3000      3000
   … |     …         …      …      …         …          …          …                           …          …         …  …      …          …          …         …         …
9995 |     2         0      1   9996         2     140000          0                           0          0         0  …     -2          1          0       241         0
9996 |     2         0     -2   9997         2      80000          0                           0          0         0  …     -2          2       3946         0         0
9997 |     1     27080      0   9998         1     200000     142520                           0     176717     10000  …      0          3     138877      6437     10017
9998 |     2         0     -1   9999         2      80000          0                           1          0         0  …      2          2        780         0         0
9999 |     1      3000      0  10000         1     230000      19750                           0      19255      3000  …      0          2      19505      3000      3000
[10000 rows x 25 columns]
 dataset_meta={
  "shape": "(10000, 25)",
  "row_count": 10000,
  "column_names": [
    "ID",
    "LIMIT_BAL",
    "SEX",
    "EDUCATION",
    "MARRIAGE",
    "AGE",
    "PAY_0",
    "PAY_2",
    "PAY_3",
    "PAY_4",
    "PAY_5",
    "PAY_6",
    "BILL_AMT1",
    "BILL_AMT2",
    "BILL_AMT3",
    "BILL_AMT4",
    "BILL_AMT5",
    "BILL_AMT6",
    "PAY_AMT1",
    "PAY_AMT2",
    "PAY_AMT3",
    "PAY_AMT4",
    "PAY_AMT5",
    "PAY_AMT6",
    "default payment next month"
  ],
  "column_types": [
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int"
  ],
  "column_uniques": [
    10000,
    72,
    2,
    7,
    4,
    54,
    11,
    11,
    11,
    11,
    10,
    10,
    8371,
    8215,
    8072,
    7913,
    7764,
    7550,
    3763,
    3581,
    3305,
    3247,
    3258,
    3174,
    2
  ],
  "columns_cat": [],
  "columns_num": [],
  "file_path": "",
  "file_name": "",
  "file_size": 0,
  "missing_values": [
    "",
    "?",
    "None",
    "nan",
    "NA",
    "N/A",
    "unknown",
    "inf",
    "-inf",
    "1.7976931348623157e+308",
    "-1.7976931348623157e+308"
  ],
  "columns_meta": [
    {
      "name": "ID",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": true,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10000,
      "frequency": 0,
      "unique": 10000,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "LIMIT_BAL",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 72,
      "frequency": 0,
      "unique": 72,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "SEX",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "EDUCATION",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7,
      "frequency": 0,
      "unique": 7,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "MARRIAGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 4,
      "frequency": 0,
      "unique": 4,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "AGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 54,
      "frequency": 0,
      "unique": 54,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_0",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8371,
      "frequency": 0,
      "unique": 8371,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8215,
      "frequency": 0,
      "unique": 8215,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8072,
      "frequency": 0,
      "unique": 8072,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7913,
      "frequency": 0,
      "unique": 7913,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7764,
      "frequency": 0,
      "unique": 7764,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7550,
      "frequency": 0,
      "unique": 7550,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3763,
      "frequency": 0,
      "unique": 3763,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3581,
      "frequency": 0,
      "unique": 3581,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3305,
      "frequency": 0,
      "unique": 3305,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3247,
      "frequency": 0,
      "unique": 3247,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3258,
      "frequency": 0,
      "unique": 3258,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3174,
      "frequency": 0,
      "unique": 3174,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "default payment next month",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    }
  ]
}
Using dataset ENTITY to prepare DIA features: column_names=['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default payment next month'] column_uniques=[10000, 72, 2, 7, 4, 54, 11, 11, 11, 11, 10, 10, 8371, 8215, 8072, 7913, 7764, 7550, 3763, 3581, 3305, 3247, 3258, 3174, 2]
DIA group columns prepared using dataset ENTITY: {'PAY_6', 'SEX', 'default payment next month', 'PAY_5', 'PAY_2', 'PAY_4', 'EDUCATION', 'PAY_3', 'PAY_0', 'MARRIAGE'}
DIA group columns to SKIP: {'default payment next month', 'model_pred'}
DIA group columns as BOOLs: [<h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f5407649ca0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f5407649d60>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f5407649dc0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f5407649e20>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f5407649e80>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f5407649ee0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f5407649f40>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f5407649fa0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f540764e040>]
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
../_images/notebooks_h2o-sonar-sklearn-models_5_3.png
../_images/notebooks_h2o-sonar-sklearn-models_5_4.png
../_images/notebooks_h2o-sonar-sklearn-models_5_5.png
../_images/notebooks_h2o-sonar-sklearn-models_5_6.png
../_images/notebooks_h2o-sonar-sklearn-models_5_7.png
../_images/notebooks_h2o-sonar-sklearn-models_5_8.png
../_images/notebooks_h2o-sonar-sklearn-models_5_9.png
../_images/notebooks_h2o-sonar-sklearn-models_5_10.png
../_images/notebooks_h2o-sonar-sklearn-models_5_11.png
../_images/notebooks_h2o-sonar-sklearn-models_5_12.png
../_images/notebooks_h2o-sonar-sklearn-models_5_13.png
../_images/notebooks_h2o-sonar-sklearn-models_5_14.png
../_images/notebooks_h2o-sonar-sklearn-models_5_15.png
../_images/notebooks_h2o-sonar-sklearn-models_5_16.png
../_images/notebooks_h2o-sonar-sklearn-models_5_17.png
../_images/notebooks_h2o-sonar-sklearn-models_5_18.png
../_images/notebooks_h2o-sonar-sklearn-models_5_19.png
../_images/notebooks_h2o-sonar-sklearn-models_5_20.png
../_images/notebooks_h2o-sonar-sklearn-models_5_21.png
../_images/notebooks_h2o-sonar-sklearn-models_5_22.png
../_images/notebooks_h2o-sonar-sklearn-models_5_23.png
../_images/notebooks_h2o-sonar-sklearn-models_5_24.png
../_images/notebooks_h2o-sonar-sklearn-models_5_25.png
../_images/notebooks_h2o-sonar-sklearn-models_5_26.png
../_images/notebooks_h2o-sonar-sklearn-models_5_27.png
../_images/notebooks_h2o-sonar-sklearn-models_5_28.png
../_images/notebooks_h2o-sonar-sklearn-models_5_29.png
../_images/notebooks_h2o-sonar-sklearn-models_5_30.png
../_images/notebooks_h2o-sonar-sklearn-models_5_31.png
../_images/notebooks_h2o-sonar-sklearn-models_5_32.png
../_images/notebooks_h2o-sonar-sklearn-models_5_33.png
../_images/notebooks_h2o-sonar-sklearn-models_5_34.png
../_images/notebooks_h2o-sonar-sklearn-models_5_35.png
../_images/notebooks_h2o-sonar-sklearn-models_5_36.png
../_images/notebooks_h2o-sonar-sklearn-models_5_37.png
../_images/notebooks_h2o-sonar-sklearn-models_5_38.png
../_images/notebooks_h2o-sonar-sklearn-models_5_39.png
../_images/notebooks_h2o-sonar-sklearn-models_5_40.png
../_images/notebooks_h2o-sonar-sklearn-models_5_41.png
../_images/notebooks_h2o-sonar-sklearn-models_5_42.png
../_images/notebooks_h2o-sonar-sklearn-models_5_43.png
../_images/notebooks_h2o-sonar-sklearn-models_5_44.png
../_images/notebooks_h2o-sonar-sklearn-models_5_45.png
../_images/notebooks_h2o-sonar-sklearn-models_5_46.png
../_images/notebooks_h2o-sonar-sklearn-models_5_47.png
../_images/notebooks_h2o-sonar-sklearn-models_5_48.png
../_images/notebooks_h2o-sonar-sklearn-models_5_49.png
../_images/notebooks_h2o-sonar-sklearn-models_5_50.png
../_images/notebooks_h2o-sonar-sklearn-models_5_51.png
../_images/notebooks_h2o-sonar-sklearn-models_5_52.png
../_images/notebooks_h2o-sonar-sklearn-models_5_53.png
../_images/notebooks_h2o-sonar-sklearn-models_5_54.png
../_images/notebooks_h2o-sonar-sklearn-models_5_55.png
../_images/notebooks_h2o-sonar-sklearn-models_5_56.png
../_images/notebooks_h2o-sonar-sklearn-models_5_57.png
../_images/notebooks_h2o-sonar-sklearn-models_5_58.png
../_images/notebooks_h2o-sonar-sklearn-models_5_59.png
../_images/notebooks_h2o-sonar-sklearn-models_5_60.png
../_images/notebooks_h2o-sonar-sklearn-models_5_61.png
../_images/notebooks_h2o-sonar-sklearn-models_5_62.png
../_images/notebooks_h2o-sonar-sklearn-models_5_63.png
../_images/notebooks_h2o-sonar-sklearn-models_5_64.png
../_images/notebooks_h2o-sonar-sklearn-models_5_65.png
../_images/notebooks_h2o-sonar-sklearn-models_5_66.png
../_images/notebooks_h2o-sonar-sklearn-models_5_67.png
../_images/notebooks_h2o-sonar-sklearn-models_5_68.png
../_images/notebooks_h2o-sonar-sklearn-models_5_69.png
../_images/notebooks_h2o-sonar-sklearn-models_5_70.png
../_images/notebooks_h2o-sonar-sklearn-models_5_71.png
../_images/notebooks_h2o-sonar-sklearn-models_5_72.png
../_images/notebooks_h2o-sonar-sklearn-models_5_73.png
../_images/notebooks_h2o-sonar-sklearn-models_5_74.png
../_images/notebooks_h2o-sonar-sklearn-models_5_75.png
../_images/notebooks_h2o-sonar-sklearn-models_5_76.png
../_images/notebooks_h2o-sonar-sklearn-models_5_77.png
../_images/notebooks_h2o-sonar-sklearn-models_5_78.png
../_images/notebooks_h2o-sonar-sklearn-models_5_79.png
../_images/notebooks_h2o-sonar-sklearn-models_5_80.png
../_images/notebooks_h2o-sonar-sklearn-models_5_81.png
../_images/notebooks_h2o-sonar-sklearn-models_5_82.png
../_images/notebooks_h2o-sonar-sklearn-models_5_83.png
../_images/notebooks_h2o-sonar-sklearn-models_5_84.png
../_images/notebooks_h2o-sonar-sklearn-models_5_85.png
../_images/notebooks_h2o-sonar-sklearn-models_5_86.png
../_images/notebooks_h2o-sonar-sklearn-models_5_87.png
../_images/notebooks_h2o-sonar-sklearn-models_5_88.png
../_images/notebooks_h2o-sonar-sklearn-models_5_89.png
../_images/notebooks_h2o-sonar-sklearn-models_5_90.png
../_images/notebooks_h2o-sonar-sklearn-models_5_91.png
../_images/notebooks_h2o-sonar-sklearn-models_5_92.png
../_images/notebooks_h2o-sonar-sklearn-models_5_93.png
../_images/notebooks_h2o-sonar-sklearn-models_5_94.png
../_images/notebooks_h2o-sonar-sklearn-models_5_95.png
../_images/notebooks_h2o-sonar-sklearn-models_5_96.png
../_images/notebooks_h2o-sonar-sklearn-models_5_97.png
../_images/notebooks_h2o-sonar-sklearn-models_5_98.png
../_images/notebooks_h2o-sonar-sklearn-models_5_99.png
../_images/notebooks_h2o-sonar-sklearn-models_5_100.png
../_images/notebooks_h2o-sonar-sklearn-models_5_101.png
Checking whether there is an H2O instance running at http://localhost:39035 ..... not found.
Attempting to start a local H2O server...
  Java Version: openjdk version "11.0.18" 2023-01-17; OpenJDK Runtime Environment (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1); OpenJDK 64-Bit Server VM (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1, mixed mode, sharing)
  Starting server from /home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/hmli/backend/bin/hmli.jar
  Ice root: /tmp/tmp85ed2c30
  JVM stdout: /tmp/tmp85ed2c30/hmli_srasaratnam_started_from_python.out
  JVM stderr: /tmp/tmp85ed2c30/hmli_srasaratnam_started_from_python.err
  Server is running at http://127.0.0.1:39035
Connecting to H2O server at http://127.0.0.1:39035 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_h9irc8
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://127.0.0.1:39035
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Connecting to H2O server at http://localhost:39035 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_h9irc8
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://localhost:39035
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
drf Model Build progress: |
Response is numeric, so the regression model will be trained. However, the cardinality is equaled to two, so if you want to train a classification model, convert the response column to categorical before training.
██████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Export File progress: |██████████████████████████████████████████████████████████| (done) 100%
Connecting to H2O server at http://localhost:39035 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
H2O_cluster_uptime: 05 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_h9irc8
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://localhost:39035
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
drf Model Build progress: |
Response is numeric, so the regression model will be trained. However, the cardinality is equaled to two, so if you want to train a classification model, convert the response column to categorical before training.
██████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Export File progress: |██████████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 30.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 40.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 10.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 100.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
<Figure size 640x480 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
../_images/notebooks_h2o-sonar-sklearn-models_5_154.png
../_images/notebooks_h2o-sonar-sklearn-models_5_155.png
../_images/notebooks_h2o-sonar-sklearn-models_5_156.png
../_images/notebooks_h2o-sonar-sklearn-models_5_157.png
../_images/notebooks_h2o-sonar-sklearn-models_5_158.png
../_images/notebooks_h2o-sonar-sklearn-models_5_159.png
../_images/notebooks_h2o-sonar-sklearn-models_5_160.png
../_images/notebooks_h2o-sonar-sklearn-models_5_161.png
../_images/notebooks_h2o-sonar-sklearn-models_5_162.png
../_images/notebooks_h2o-sonar-sklearn-models_5_163.png
../_images/notebooks_h2o-sonar-sklearn-models_5_164.png
../_images/notebooks_h2o-sonar-sklearn-models_5_165.png
H2O session _sid_b7e2 closed.
[6]:
# open interpretation HTML report in web browser
webbrowser.open(interpretation.result.get_html_report_location())
[6]:
True
[7]:
# View results directory
!tree {interpretation.persistence.base_dir}
../../results/h2o-sonar/mli_experiment_d837ebab-9dcc-490d-bb8d-e91a0fdf12b5
├── explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_04a23bfc-ab76-40c0-894c-6089af15b92e
│   ├── global_disparate_impact_analysis
│   │   ├── text_plain
│   │   │   └── explanation.txt
│   │   └── text_plain.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dia-0-accuracy.png
│   │   │   ├── dia-0-adverse_impact.png
│   │   │   ├── dia-0-false_discovery_rate.png
│   │   │   ├── dia-0-false_negative_rate.png
│   │   │   ├── dia-0-false_omissions_rate.png
│   │   │   ├── dia-0-false_positive_rate.png
│   │   │   ├── dia-0-negative_predicted_value.png
│   │   │   ├── dia-0-n.png
│   │   │   ├── dia-0-precision.png
│   │   │   ├── dia-0-specificity.png
│   │   │   ├── dia-0-true_positive_rate.png
│   │   │   ├── dia-1-accuracy.png
│   │   │   ├── dia-1-adverse_impact.png
│   │   │   ├── dia-1-false_discovery_rate.png
│   │   │   ├── dia-1-false_negative_rate.png
│   │   │   ├── dia-1-false_omissions_rate.png
│   │   │   ├── dia-1-false_positive_rate.png
│   │   │   ├── dia-1-negative_predicted_value.png
│   │   │   ├── dia-1-n.png
│   │   │   ├── dia-1-precision.png
│   │   │   ├── dia-1-specificity.png
│   │   │   ├── dia-1-true_positive_rate.png
│   │   │   ├── dia-2-accuracy.png
│   │   │   ├── dia-2-adverse_impact.png
│   │   │   ├── dia-2-false_discovery_rate.png
│   │   │   ├── dia-2-false_negative_rate.png
│   │   │   ├── dia-2-false_omissions_rate.png
│   │   │   ├── dia-2-false_positive_rate.png
│   │   │   ├── dia-2-negative_predicted_value.png
│   │   │   ├── dia-2-n.png
│   │   │   ├── dia-2-precision.png
│   │   │   ├── dia-2-specificity.png
│   │   │   ├── dia-2-true_positive_rate.png
│   │   │   ├── dia-3-accuracy.png
│   │   │   ├── dia-3-adverse_impact.png
│   │   │   ├── dia-3-false_discovery_rate.png
│   │   │   ├── dia-3-false_negative_rate.png
│   │   │   ├── dia-3-false_omissions_rate.png
│   │   │   ├── dia-3-false_positive_rate.png
│   │   │   ├── dia-3-negative_predicted_value.png
│   │   │   ├── dia-3-n.png
│   │   │   ├── dia-3-precision.png
│   │   │   ├── dia-3-specificity.png
│   │   │   ├── dia-3-true_positive_rate.png
│   │   │   ├── dia-4-accuracy.png
│   │   │   ├── dia-4-adverse_impact.png
│   │   │   ├── dia-4-false_discovery_rate.png
│   │   │   ├── dia-4-false_negative_rate.png
│   │   │   ├── dia-4-false_omissions_rate.png
│   │   │   ├── dia-4-false_positive_rate.png
│   │   │   ├── dia-4-negative_predicted_value.png
│   │   │   ├── dia-4-n.png
│   │   │   ├── dia-4-precision.png
│   │   │   ├── dia-4-specificity.png
│   │   │   ├── dia-4-true_positive_rate.png
│   │   │   ├── dia-5-accuracy.png
│   │   │   ├── dia-5-adverse_impact.png
│   │   │   ├── dia-5-false_discovery_rate.png
│   │   │   ├── dia-5-false_negative_rate.png
│   │   │   ├── dia-5-false_omissions_rate.png
│   │   │   ├── dia-5-false_positive_rate.png
│   │   │   ├── dia-5-negative_predicted_value.png
│   │   │   ├── dia-5-n.png
│   │   │   ├── dia-5-precision.png
│   │   │   ├── dia-5-specificity.png
│   │   │   ├── dia-5-true_positive_rate.png
│   │   │   ├── dia-6-accuracy.png
│   │   │   ├── dia-6-adverse_impact.png
│   │   │   ├── dia-6-false_discovery_rate.png
│   │   │   ├── dia-6-false_negative_rate.png
│   │   │   ├── dia-6-false_omissions_rate.png
│   │   │   ├── dia-6-false_positive_rate.png
│   │   │   ├── dia-6-negative_predicted_value.png
│   │   │   ├── dia-6-n.png
│   │   │   ├── dia-6-precision.png
│   │   │   ├── dia-6-specificity.png
│   │   │   ├── dia-6-true_positive_rate.png
│   │   │   ├── dia-7-accuracy.png
│   │   │   ├── dia-7-adverse_impact.png
│   │   │   ├── dia-7-false_discovery_rate.png
│   │   │   ├── dia-7-false_negative_rate.png
│   │   │   ├── dia-7-false_omissions_rate.png
│   │   │   ├── dia-7-false_positive_rate.png
│   │   │   ├── dia-7-negative_predicted_value.png
│   │   │   ├── dia-7-n.png
│   │   │   ├── dia-7-precision.png
│   │   │   ├── dia-7-specificity.png
│   │   │   ├── dia-7-true_positive_rate.png
│   │   │   ├── dia-8-accuracy.png
│   │   │   ├── dia-8-adverse_impact.png
│   │   │   ├── dia-8-false_discovery_rate.png
│   │   │   ├── dia-8-false_negative_rate.png
│   │   │   ├── dia-8-false_omissions_rate.png
│   │   │   ├── dia-8-false_positive_rate.png
│   │   │   ├── dia-8-negative_predicted_value.png
│   │   │   ├── dia-8-n.png
│   │   │   ├── dia-8-precision.png
│   │   │   ├── dia-8-specificity.png
│   │   │   ├── dia-8-true_positive_rate.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── log
│   │   └── explainer_run_04a23bfc-ab76-40c0-894c-6089af15b92e.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dia_entity.json
│       ├── EDUCATION
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── MARRIAGE
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_0
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_2
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_3
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_4
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_5
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_6
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       └── SEX
│           ├── 0
│           │   ├── cm.jay
│           │   ├── disparity.jay
│           │   ├── me_smd.jay
│           │   └── parity.jay
│           ├── 1
│           │   ├── cm.jay
│           │   ├── disparity.jay
│           │   ├── me_smd.jay
│           │   └── parity.jay
│           └── metrics.jay
├── explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_2d204aec-db51-4d8d-82d6-18f033327dc5
│   ├── global_custom_archive
│   │   ├── application_zip
│   │   │   └── explanation.zip
│   │   └── application_zip.meta
│   ├── global_decision_tree
│   │   ├── application_json
│   │   │   ├── dt_class_0.json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dt-class-0.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── local_decision_tree
│   │   ├── application_json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── log
│   │   └── explainer_run_2d204aec-db51-4d8d-82d6-18f033327dc5.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dt-class-0.dot
│       ├── dt-class-0.dot.pdf
│       ├── dtModel.json
│       ├── dtpaths_frame.bin
│       ├── dtPathsFrame.csv
│       ├── dtsurr_mojo.zip
│       ├── dtSurrogate.json
│       └── dt_surrogate_rules.zip
├── explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_d59ad272-40c9-4c52-adf2-9533f4c22299
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── explanation.html
│   │   │   ├── pd-feature-0-class-0.png
│   │   │   ├── pd-feature-1-class-0.png
│   │   │   ├── pd-feature-2-class-0.png
│   │   │   ├── pd-feature-3-class-0.png
│   │   │   ├── pd-feature-4-class-0.png
│   │   │   ├── pd-feature-5-class-0.png
│   │   │   ├── pd-feature-6-class-0.png
│   │   │   ├── pd-feature-7-class-0.png
│   │   │   ├── pd-feature-8-class-0.png
│   │   │   └── pd-feature-9-class-0.png
│   │   └── text_html.meta
│   ├── global_partial_dependence
│   │   ├── application_json
│   │   │   ├── explanation.json
│   │   │   ├── pd_feature_0_class_0.json
│   │   │   ├── pd_feature_1_class_0.json
│   │   │   ├── pd_feature_2_class_0.json
│   │   │   ├── pd_feature_3_class_0.json
│   │   │   ├── pd_feature_4_class_0.json
│   │   │   ├── pd_feature_5_class_0.json
│   │   │   ├── pd_feature_6_class_0.json
│   │   │   ├── pd_feature_7_class_0.json
│   │   │   ├── pd_feature_8_class_0.json
│   │   │   └── pd_feature_9_class_0.json
│   │   └── application_json.meta
│   ├── local_individual_conditional_explanation
│   │   ├── application_vnd_h2oai_json_datatable_jay
│   │   │   ├── explanation.json
│   │   │   ├── ice_feature_0_class_0.jay
│   │   │   ├── ice_feature_1_class_0.jay
│   │   │   ├── ice_feature_2_class_0.jay
│   │   │   ├── ice_feature_3_class_0.jay
│   │   │   ├── ice_feature_4_class_0.jay
│   │   │   ├── ice_feature_5_class_0.jay
│   │   │   ├── ice_feature_6_class_0.jay
│   │   │   ├── ice_feature_7_class_0.jay
│   │   │   ├── ice_feature_8_class_0.jay
│   │   │   ├── ice_feature_9_class_0.jay
│   │   │   └── y_hat.jay
│   │   └── application_vnd_h2oai_json_datatable_jay.meta
│   ├── log
│   │   └── explainer_run_d59ad272-40c9-4c52-adf2-9533f4c22299.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── h2o_sonar-ice-dai-model-10.jay
│       ├── h2o_sonar-ice-dai-model-1.jay
│       ├── h2o_sonar-ice-dai-model-2.jay
│       ├── h2o_sonar-ice-dai-model-3.jay
│       ├── h2o_sonar-ice-dai-model-4.jay
│       ├── h2o_sonar-ice-dai-model-5.jay
│       ├── h2o_sonar-ice-dai-model-6.jay
│       ├── h2o_sonar-ice-dai-model-7.jay
│       ├── h2o_sonar-ice-dai-model-8.jay
│       ├── h2o_sonar-ice-dai-model-9.jay
│       ├── h2o_sonar-ice-dai-model.json
│       ├── h2o_sonar-pd-dai-model.json
│       └── mli_dataset_y_hat.jay
├── explainer_h2o_sonar_explainers_residual_dt_surrogate_explainer_ResidualDecisionTreeSurrogateExplainer_5013de6c-b21a-461d-9035-5959906503e0
│   ├── global_custom_archive
│   │   ├── application_zip
│   │   │   └── explanation.zip
│   │   └── application_zip.meta
│   ├── global_decision_tree
│   │   ├── application_json
│   │   │   ├── dt_class_0.json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dt-class-0.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── local_decision_tree
│   │   ├── application_json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── log
│   │   └── explainer_run_5013de6c-b21a-461d-9035-5959906503e0.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dt-class-0.dot
│       ├── dt-class-0.dot.pdf
│       ├── dtModel.json
│       ├── dtpaths_frame.bin
│       ├── dtPathsFrame.csv
│       ├── dtsurr_mojo.zip
│       ├── dtSurrogate.json
│       └── dt_surrogate_rules.zip
├── explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_8fb94c43-2457-40ef-9359-6dbbed482989
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── explanation.html
│   │   │   ├── feature_0_class_0.png
│   │   │   ├── feature_10_class_0.png
│   │   │   ├── feature_11_class_0.png
│   │   │   ├── feature_12_class_0.png
│   │   │   ├── feature_13_class_0.png
│   │   │   ├── feature_14_class_0.png
│   │   │   ├── feature_15_class_0.png
│   │   │   ├── feature_16_class_0.png
│   │   │   ├── feature_17_class_0.png
│   │   │   ├── feature_18_class_0.png
│   │   │   ├── feature_19_class_0.png
│   │   │   ├── feature_1_class_0.png
│   │   │   ├── feature_20_class_0.png
│   │   │   ├── feature_21_class_0.png
│   │   │   ├── feature_22_class_0.png
│   │   │   ├── feature_23_class_0.png
│   │   │   ├── feature_2_class_0.png
│   │   │   ├── feature_3_class_0.png
│   │   │   ├── feature_4_class_0.png
│   │   │   ├── feature_5_class_0.png
│   │   │   ├── feature_6_class_0.png
│   │   │   ├── feature_7_class_0.png
│   │   │   ├── feature_8_class_0.png
│   │   │   ├── feature_9_class_0.png
│   │   │   └── shapley-class-0.png
│   │   └── text_html.meta
│   ├── global_summary_feature_importance
│   │   ├── application_json
│   │   │   ├── explanation.json
│   │   │   ├── feature_0_class_0.png
│   │   │   ├── feature_10_class_0.png
│   │   │   ├── feature_11_class_0.png
│   │   │   ├── feature_12_class_0.png
│   │   │   ├── feature_13_class_0.png
│   │   │   ├── feature_14_class_0.png
│   │   │   ├── feature_15_class_0.png
│   │   │   ├── feature_16_class_0.png
│   │   │   ├── feature_17_class_0.png
│   │   │   ├── feature_18_class_0.png
│   │   │   ├── feature_19_class_0.png
│   │   │   ├── feature_1_class_0.png
│   │   │   ├── feature_20_class_0.png
│   │   │   ├── feature_21_class_0.png
│   │   │   ├── feature_22_class_0.png
│   │   │   ├── feature_23_class_0.png
│   │   │   ├── feature_2_class_0.png
│   │   │   ├── feature_3_class_0.png
│   │   │   ├── feature_4_class_0.png
│   │   │   ├── feature_5_class_0.png
│   │   │   ├── feature_6_class_0.png
│   │   │   ├── feature_7_class_0.png
│   │   │   ├── feature_8_class_0.png
│   │   │   ├── feature_9_class_0.png
│   │   │   ├── summary_feature_importance_class_0_offset_0.json
│   │   │   ├── summary_feature_importance_class_0_offset_1.json
│   │   │   └── summary_feature_importance_class_0_offset_2.json
│   │   ├── application_json.meta
│   │   ├── application_vnd_h2oai_json_datatable_jay
│   │   │   ├── explanation.json
│   │   │   └── summary_feature_importance_class_0.jay
│   │   ├── application_vnd_h2oai_json_datatable_jay.meta
│   │   ├── text_markdown
│   │   │   ├── explanation.md
│   │   │   └── shapley-class-0.png
│   │   └── text_markdown.meta
│   ├── log
│   │   └── explainer_run_8fb94c43-2457-40ef-9359-6dbbed482989.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── raw_shapley_contribs_class_0.jay
│       ├── raw_shapley_contribs_index.json
│       ├── report.md
│       └── shapley-class-0.png
├── explainers_parameters.json
├── interpretation.html
└── interpretation.json

138 directories, 591 files
[8]:
# Check for successful explainers
interpretation.get_successful_explainer_ids()
[8]:
['h2o_sonar.explainers.dia_explainer.DiaExplainer',
 'h2o_sonar.explainers.residual_dt_surrogate_explainer.ResidualDecisionTreeSurrogateExplainer',
 'h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainer',
 'h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer',
 'h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer']
[9]:
# Check for any failures
interpretation.get_failed_explainer_ids()
[9]:
[]
[10]:
# View params passed into Interpretation job
interpretation.common_params.dump()
[10]:
{'model': GradientBoostingClassifier(),
 'dataset': '../../data/creditcard.csv',
 'validset': None,
 'testset': None,
 'use_raw_features': True,
 'target_col': 'default payment next month',
 'weight_col': '',
 'prediction_col': '',
 'drop_cols': [],
 'sample_num_rows': None,
 'results_location': '../../results',
 'extra_params': None,
 'used_features': ['ID',
  'LIMIT_BAL',
  'SEX',
  'EDUCATION',
  'MARRIAGE',
  'AGE',
  'PAY_0',
  'PAY_2',
  'PAY_3',
  'PAY_4',
  'PAY_5',
  'PAY_6',
  'BILL_AMT1',
  'BILL_AMT2',
  'BILL_AMT3',
  'BILL_AMT4',
  'BILL_AMT5',
  'BILL_AMT6',
  'PAY_AMT1',
  'PAY_AMT2',
  'PAY_AMT3',
  'PAY_AMT4',
  'PAY_AMT5',
  'PAY_AMT6'],
 'cfg_items_dict': {'model': <h2o_sonar.lib.api.commons.Param at 0x7f5439eecee0>,
  'dataset': <h2o_sonar.lib.api.commons.Param at 0x7f5439eecf10>,
  'target_col': <h2o_sonar.lib.api.commons.Param at 0x7f5439e78340>,
  'validset': <h2o_sonar.lib.api.commons.Param at 0x7f5439e78310>,
  'testset': <h2o_sonar.lib.api.commons.Param at 0x7f5439e78370>,
  'use_raw_features': <h2o_sonar.lib.api.commons.Param at 0x7f5439e783a0>,
  'weight_col': <h2o_sonar.lib.api.commons.Param at 0x7f5439e783d0>,
  'prediction_col': <h2o_sonar.lib.api.commons.Param at 0x7f5439e78400>,
  'drop_cols': <h2o_sonar.lib.api.commons.Param at 0x7f5439e78430>,
  'sample_num_rows': <h2o_sonar.lib.api.commons.Param at 0x7f5439e78460>,
  'results_location': <h2o_sonar.lib.api.commons.Param at 0x7f5439e78490>,
  'used_features': <h2o_sonar.lib.api.commons.Param at 0x7f5439e784c0>}}
[ ]: