H2O Eval Studio Demo of H2O-3 Models

This example demonstrates how to interpret a H2O-3 models using the H2O Eval Studio library.

[1]:
# install H2O-3 client
!pip install h2o
Collecting h2o
  Downloading h2o-3.40.0.2.tar.gz (177.6 MB)
     |████████████████████████████████| 177.6 MB 71 kB/s s eta 0:00:01
Requirement already satisfied: requests in /home/srasaratnam/minicondadai_py38/lib/python3.8/site-packages (from h2o) (2.24.0)
Collecting tabulate
  Using cached tabulate-0.9.0-py3-none-any.whl (35 kB)
Collecting future
  Using cached future-0.18.3.tar.gz (840 kB)
Requirement already satisfied: idna<3,>=2.5 in /home/srasaratnam/minicondadai_py38/lib/python3.8/site-packages (from requests->h2o) (2.10)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /home/srasaratnam/minicondadai_py38/lib/python3.8/site-packages (from requests->h2o) (1.25.11)
Requirement already satisfied: chardet<4,>=3.0.2 in /home/srasaratnam/minicondadai_py38/lib/python3.8/site-packages (from requests->h2o) (3.0.4)
Requirement already satisfied: certifi>=2017.4.17 in /home/srasaratnam/minicondadai_py38/lib/python3.8/site-packages (from requests->h2o) (2022.12.7)
Building wheels for collected packages: h2o, future
  Building wheel for h2o (setup.py) ... done
  Created wheel for h2o: filename=h2o-3.40.0.2-py2.py3-none-any.whl size=177693441 sha256=1615886e6fa85c8f01380f428e68e9d37f413b4d157aaa0ae79f1d0d0866e947
  Stored in directory: /home/srasaratnam/.cache/pip/wheels/6f/65/34/dd63b76ae6dfc27df6237662b2b6cc1a1c8b3dbe9a38b8b704
  Building wheel for future (setup.py) ... done
  Created wheel for future: filename=future-0.18.3-py3-none-any.whl size=492026 sha256=1a5162fbb121247b8a51c04cb82eddc9491d4e0f92a96e2fc569bc5a04ed3c9e
  Stored in directory: /home/srasaratnam/.cache/pip/wheels/a0/0b/ee/e6994fadb42c1354dcccb139b0bf2795271bddfe6253ccdf11
Successfully built h2o future
Installing collected packages: tabulate, future, h2o
ERROR: After October 2020 you may experience errors when installing or updating packages. This is because pip will change the way that it resolves dependency conflicts.

We recommend you use --use-feature=2020-resolver to test your packages with the new resolver before it becomes the default.

h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires aiohttp, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires aiosignal, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires albumentations, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires altair, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires altair-data-server, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires altair-saver, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires altair-viewer, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires aniso8601, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires appdirs, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires async-generator, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires async-timeout, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires backports.functools-lru-cache, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires bcrypt, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires bokeh, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cachetools, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires captum, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cgroupspy, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires charset-normalizer, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires click, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires click-plugins, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cligj, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cloudpickle, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cmake, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires colorcet, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires colorlog, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires configparser, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires convertdate, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cupy-cuda112, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cycler, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cython, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires cytoolz, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires dask, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires dask-glm, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires dask-ml, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires datashader, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires dill, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires distlib, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires distributed, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires docxtpl, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires dulwich, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires easyprocess, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires efficientnet, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires execnet, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires expects, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires fastavro, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires fastrlock, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires feather-format, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires filelock, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires flask, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires flask-restful, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires flit-core, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires frozenlist, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires fs-gcsfs, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires fsspec, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires gitdb, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires gitdb2, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires gitpython, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires graphviz, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires h11, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires h5py, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires hanging-threads, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires heapdict, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires hijri-converter, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires holidays, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires html5lib, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires httplib2, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires httpretty, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires image-classifiers, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires imagecodecs-lite, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires imageio, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires imgaug, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires itsdangerous, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires joblib, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires jsonpickle, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires jupyter-server-proxy, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires kaggle, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires keras, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires Keras-Applications, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires Keras-Preprocessing, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires kiwisolver, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires korean-lunar-calendar, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires langdetect, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires ldap3, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires libclang, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires license-management-client, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires llvmlite, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires locket, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires loky, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires lxml, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires madgrad, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires mapclassify, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires markdown, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires matplotlib, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires memory-profiler, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires minio, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires multidict, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires multipledispatch, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires multiprocess, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires munch, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires natsort, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires networkx, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires numba, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires numpy, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires nvtx, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires objectpath, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires opencv-python-headless, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires opt-einsum, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires outcome, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pandas, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires panel, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires param, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires partd, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires patsy, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pillow, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires platformdirs, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires plotly, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pooch, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires portpicker, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires protobuf, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires psutil, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pyarrow, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pyasn1, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pycryptodome, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pyct, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pydeck, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pydeprecate, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pymeeus, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pynndescent, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pynvml, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pyorc, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pyproj, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires python-docx, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires python-magic, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires python-rapidjson, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires python-slugify, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires python-terraform, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pyvirtualdisplay, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pyviz-comms, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pywavelets, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires pyyaml, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires redis, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires regex, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires requests-file, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires requirements-parser, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires rfpimp, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires rtree, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires s3fs, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires sacremoses, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires scikit-image, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires scikit-learn, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires scipy, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires seaborn, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires selenium, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires sentencepiece, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires setproctitle, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires shapely, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires simpervisor, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires smmap, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires sortedcontainers, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires statsmodels, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires streamz, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires tables, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires tblib, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires tenacity, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires tensorflow-metadata, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires text-unidecode, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires threadpoolctl, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires tifffile, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires timm, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires tokenizers, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires toml, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires toolz, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires torch, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires torchaudio, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires torchmetrics, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires torchvision, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires transformers, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires treelite, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires treelite-runtime, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires trio, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires trio-websocket, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires tritonclient, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires typesentry, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires typing-extensions, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires umap-learn, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires virtualenv, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires werkzeug, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires wsproto, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires xarray, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires xlrd, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires yapf, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires yarl, which is not installed.
h2oaicore 1.10.5+local.dev.placeholder.15282.g7c65ae8a9f.dirty requires zict, which is not installed.
Successfully installed future-0.18.3 h2o-3.40.0.2 tabulate-0.9.0
[2]:
import h2o
import pandas
import datatable
import webbrowser

from h2o.estimators.gbm import H2OGradientBoostingEstimator

from h2o_sonar import interpret
from h2o_sonar.lib.api.models import ExplainableModel, ExplainableModelType, ExplainableModelMeta
from h2o_sonar.lib.api.datasets import ExplainableDataset
from h2o_sonar.utils.sanitization import SanitizationMap
[3]:
h2o.init()
Checking whether there is an H2O instance running at http://localhost:54321..... not found.
Attempting to start a local H2O server...
  Java Version: openjdk version "11.0.18" 2023-01-17; OpenJDK Runtime Environment (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1); OpenJDK 64-Bit Server VM (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1, mixed mode, sharing)
  Starting server from /home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/h2o/backend/bin/h2o.jar
  Ice root: /tmp/tmpya82k42b
  JVM stdout: /tmp/tmpya82k42b/h2o_srasaratnam_started_from_python.out
  JVM stderr: /tmp/tmpya82k42b/h2o_srasaratnam_started_from_python.err
  Server is running at http://127.0.0.1:54321
Connecting to H2O server at http://127.0.0.1:54321 ... successful.
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.40.0.2
H2O_cluster_version_age: 3 days
H2O_cluster_name: H2O_from_python_srasaratnam_re6lv3
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 7.775 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://127.0.0.1:54321
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
Python_version: 3.8.10 final
[4]:
# dataset
dataset_path = "../../data/creditcard.csv"
target_col = "default payment next month"
df = h2o.import_file(dataset_path)
X = list(df.names)
X.remove(target_col)
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
[5]:
X
[5]:
['ID',
 'LIMIT_BAL',
 'SEX',
 'EDUCATION',
 'MARRIAGE',
 'AGE',
 'PAY_0',
 'PAY_2',
 'PAY_3',
 'PAY_4',
 'PAY_5',
 'PAY_6',
 'BILL_AMT1',
 'BILL_AMT2',
 'BILL_AMT3',
 'BILL_AMT4',
 'BILL_AMT5',
 'BILL_AMT6',
 'PAY_AMT1',
 'PAY_AMT2',
 'PAY_AMT3',
 'PAY_AMT4',
 'PAY_AMT5',
 'PAY_AMT6']
[6]:
df.head()
[6]:
ID LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 BILL_AMT1 BILL_AMT2 BILL_AMT3 BILL_AMT4 BILL_AMT5 BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_AMT3 PAY_AMT4 PAY_AMT5 PAY_AMT6 default payment next month
1 20000 2 2 1 24 -2 2 -1 -1 -2 -2 3913 3102 689 0 0 0 0 689 0 0 0 0 1
2 120000 2 2 2 26 -1 2 0 0 0 2 2682 1725 2682 3272 3455 3261 0 1000 1000 1000 0 2000 1
3 90000 2 2 2 34 0 0 0 0 0 0 29239 14027 13559 14331 14948 15549 1518 1500 1000 1000 1000 5000 0
4 50000 2 2 1 37 1 0 0 0 0 0 46990 48233 49291 28314 28959 29547 2000 2019 1200 1100 1069 1000 0
5 50000 1 2 1 57 2 0 -1 0 0 0 8617 5670 35835 20940 19146 19131 2000 36681 10000 9000 689 679 0
6 50000 1 1 2 37 3 0 0 0 0 0 64400 57069 57608 19394 19619 20024 2500 1815 657 1000 1000 800 0
7 500000 1 1 2 29 4 0 0 0 0 0 367965 412023 445007 542653 483003 473944 55000 40000 38000 20239 13750 13770 0
8 100000 2 2 2 23 5 -1 -1 0 0 -1 11876 380 601 221 -159 567 380 601 0 581 1687 1542 0
9 140000 2 3 1 28 6 0 2 0 0 0 11285 14096 12108 12211 11793 3719 3329 0 432 1000 1000 1000 0
10 20000 1 3 2 35 7 -2 -2 -2 -1 -1 0 0 0 0 13007 13912 0 0 0 13007 1122 0 0
[10 rows x 25 columns]
[7]:
# h2o model
gradient_booster = H2OGradientBoostingEstimator(ntrees=1, seed=1234)
gradient_booster.train(
    x=X,
    y=target_col,
    training_frame=df,
    verbose=True,
)
gbm Model Build progress: |
/home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/h2o/estimators/estimator_base.py:193: RuntimeWarning: We have detected that your response column has only 2 unique values (0/1). If you wish to train a binary model instead of a regression model, convert your target column to categorical before training.
  warnings.warn(mesg["message"], RuntimeWarning)

Scoring History for Model GBM_model_python_1678677213382_1 at 2023-03-12 23:14:01.124124
Model Build is 0% done...
               timestamp    duration  number_of_trees  training_rmse  \
0    2023-03-12 23:14:00   0.026 sec              0.0       0.418174

   training_mae  training_deviance
0      0.349738           0.174869


██████████████████████████████████████████████████████| (done) 100%
[7]:
Model Details
=============
H2OGradientBoostingEstimator : Gradient Boosting Machine
Model Key: GBM_model_python_1678677213382_1
Model Summary:
number_of_trees number_of_internal_trees model_size_in_bytes min_depth max_depth mean_depth min_leaves max_leaves mean_leaves
1.0 1.0 385.0 5.0 5.0 5.0 26.0 26.0 26.0
ModelMetricsRegression: gbm
** Reported on train data. **

MSE: 0.16845099602759814
RMSE: 0.41042782072807654
MAE: 0.3429823858305812
RMSLE: 0.2875261825477124
Mean Residual Deviance: 0.16845099602759814
Scoring History:
timestamp duration number_of_trees training_rmse training_mae training_deviance
2023-03-12 23:14:00 0.026 sec 0.0 0.4181736 0.3497384 0.1748692
2023-03-12 23:14:01 0.227 sec 1.0 0.4104278 0.3429824 0.1684510
Variable Importances:
variable relative_importance scaled_importance percentage
PAY_0 258.5125122 1.0 0.7652836
PAY_3 24.0844650 0.0931656 0.0712981
PAY_AMT1 8.8146772 0.0340977 0.0260944
PAY_5 8.6635008 0.0335129 0.0256469
PAY_2 8.5906410 0.0332310 0.0254312
PAY_4 5.4334307 0.0210181 0.0160848
LIMIT_BAL 4.9508743 0.0191514 0.0146562
ID 4.8031120 0.0185798 0.0142188
BILL_AMT1 4.0065289 0.0154984 0.0118607
PAY_AMT5 3.9974132 0.0154631 0.0118337
--- --- --- ---
EDUCATION 0.0 0.0 0.0
MARRIAGE 0.0 0.0 0.0
PAY_6 0.0 0.0 0.0
BILL_AMT2 0.0 0.0 0.0
BILL_AMT3 0.0 0.0 0.0
BILL_AMT4 0.0 0.0 0.0
BILL_AMT5 0.0 0.0 0.0
PAY_AMT2 0.0 0.0 0.0
PAY_AMT4 0.0 0.0 0.0
PAY_AMT6 0.0 0.0 0.0
[24 rows x 4 columns]

[tips]
Use `model.explain()` to inspect the model.
--
Use `h2o.display.toggle_user_tips()` to switch on/off this section.
[8]:
mojo_path = gradient_booster.save_mojo(path="../../results", force=True)
[9]:
gradient_booster_mojo = h2o.import_mojo(mojo_path)
generic Model Build progress: |██████████████████████████████████████████████████| (done) 100%
[10]:
# H2O model
results_location = "../../results"

# run Interpretation
interpretation = interpret.run_interpretation(
    dataset=dataset_path,
    model=gradient_booster,
    target_col=target_col,
    results_location=results_location,
    used_features=X,
)

# optionally make ExplainableModel() object to provide additional metadata
# h2o_model = ExplainableModel(
#     predict_method=gradient_booster.predict,
#     model_src=gradient_booster,
#     model_type=ExplainableModelType.h2o3,
#     model_meta=ExplainableModelMeta(target_col=target_col)
# )
/home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
Preparing and checking DIA features (None): dataset=     | BILL_AMT4  BILL_AMT6  default payment next month  PAY_3  PAY_AMT4  EDUCATION  PAY_AMT2    AGE  PAY_4  PAY_AMT3  …  PAY_2  PAY_0  BILL_AMT2  BILL_AMT5  MARRIAGE
     |     int32      int32                        int8  int32     int32      int32     int32  int32  int32     int32     int32  int32      int32      int32     int32
---- + ---------  ---------  --------------------------  -----  --------  ---------  --------  -----  -----  --------     -----  -----  ---------  ---------  --------
   0 |         0          0                           1     -1         0          2       689     24     -1         0  …      2     -2       3102          0         1
   1 |      3272       3261                           1      0      1000          2      1000     26      0      1000  …      2     -1       1725       3455         2
   2 |     14331      15549                           0      0      1000          2      1500     34      0      1000  …      0      0      14027      14948         2
   3 |     28314      29547                           0      0      1100          2      2019     37      0      1200  …      0      1      48233      28959         1
   4 |     20940      19131                           0     -1      9000          2     36681     57      0     10000  …      0      2       5670      19146         1
   5 |     19394      20024                           0      0      1000          1      1815     37      0       657  …      0      3      57069      19619         2
   6 |    542653     473944                           0      0     20239          1     40000     29      0     38000  …      0      4     412023     483003         2
   7 |       221        567                           0     -1       581          2       601     23      0         0  …     -1      5        380       -159         2
   8 |     12211       3719                           0      2      1000          3         0     28      0       432  …      0      6      14096      11793         1
   9 |         0      13912                           0     -2     13007          3         0     35     -2         0  …     -2      7          0      13007         2
  10 |      2513       3731                           0      2       300          3        12     34      0        50  …      0      8       9787       1828         2
  11 |      8517      13668                           0     -1     22301          1      9966     51     -1      8583  …     -1     -1      21670      22287         2
  12 |      6500       2870                           0     -1      6500          2      6500     41     -1      6500  …      0     -1       6500       6500         2
  13 |     66782      36894                           1      2      3000          2         0     30      0      3000  …      2      1      67369      36137         2
  14 |     59696      55512                           0      0      3000          1      3000     29      0      3000  …      0      0      67060      56875         2
   … |         …          …                           …      …         …          …         …      …      …         …  …      …      …          …          …         …
9995 |         0          0                           0     -2         0          1         0     31     -2         0  …     -2      1        241          0         2
9996 |         0          0                           0     -2         0          2         0     37     -2         0  …     -2     -2          0          0         2
9997 |    151078     168431                           0      0     27080          3      5000     44      0     10000  …      0      0     144085     176717         1
9998 |         0          0                           1      2         0          2         0     26     -2         0  …      2     -1        780          0         2
9999 |     19506      17479                           0      0      3000          2      3000     36      0      3000  …      0      0      20715      19255         1
[10000 rows x 25 columns]
 dataset_meta={
  "shape": "(10000, 25)",
  "row_count": 10000,
  "column_names": [
    "ID",
    "LIMIT_BAL",
    "SEX",
    "EDUCATION",
    "MARRIAGE",
    "AGE",
    "PAY_0",
    "PAY_2",
    "PAY_3",
    "PAY_4",
    "PAY_5",
    "PAY_6",
    "BILL_AMT1",
    "BILL_AMT2",
    "BILL_AMT3",
    "BILL_AMT4",
    "BILL_AMT5",
    "BILL_AMT6",
    "PAY_AMT1",
    "PAY_AMT2",
    "PAY_AMT3",
    "PAY_AMT4",
    "PAY_AMT5",
    "PAY_AMT6",
    "default payment next month"
  ],
  "column_types": [
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int"
  ],
  "column_uniques": [
    10000,
    72,
    2,
    7,
    4,
    54,
    11,
    11,
    11,
    11,
    10,
    10,
    8371,
    8215,
    8072,
    7913,
    7764,
    7550,
    3763,
    3581,
    3305,
    3247,
    3258,
    3174,
    2
  ],
  "columns_cat": [],
  "columns_num": [],
  "file_path": "",
  "file_name": "",
  "file_size": 0,
  "missing_values": [
    "",
    "?",
    "None",
    "nan",
    "NA",
    "N/A",
    "unknown",
    "inf",
    "-inf",
    "1.7976931348623157e+308",
    "-1.7976931348623157e+308"
  ],
  "columns_meta": [
    {
      "name": "ID",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": true,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10000,
      "frequency": 0,
      "unique": 10000,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "LIMIT_BAL",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 72,
      "frequency": 0,
      "unique": 72,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "SEX",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "EDUCATION",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7,
      "frequency": 0,
      "unique": 7,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "MARRIAGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 4,
      "frequency": 0,
      "unique": 4,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "AGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 54,
      "frequency": 0,
      "unique": 54,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_0",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8371,
      "frequency": 0,
      "unique": 8371,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8215,
      "frequency": 0,
      "unique": 8215,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8072,
      "frequency": 0,
      "unique": 8072,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7913,
      "frequency": 0,
      "unique": 7913,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7764,
      "frequency": 0,
      "unique": 7764,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7550,
      "frequency": 0,
      "unique": 7550,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3763,
      "frequency": 0,
      "unique": 3763,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3581,
      "frequency": 0,
      "unique": 3581,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3305,
      "frequency": 0,
      "unique": 3305,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3247,
      "frequency": 0,
      "unique": 3247,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3258,
      "frequency": 0,
      "unique": 3258,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3174,
      "frequency": 0,
      "unique": 3174,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "default payment next month",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    }
  ]
}
Using dataset ENTITY to prepare DIA features: column_names=['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default payment next month'] column_uniques=[10000, 72, 2, 7, 4, 54, 11, 11, 11, 11, 10, 10, 8371, 8215, 8072, 7913, 7764, 7550, 3763, 3581, 3305, 3247, 3258, 3174, 2]
DIA group columns prepared using dataset ENTITY: {'PAY_3', 'EDUCATION', 'PAY_4', 'default payment next month', 'SEX', 'PAY_2', 'PAY_0', 'PAY_5', 'PAY_6', 'MARRIAGE'}
DIA group columns to SKIP: {'default payment next month', 'model_pred'}
DIA group columns as BOOLs: [<h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc2d60>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc2e20>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc2e80>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc2ee0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc2f40>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc2fa0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc8040>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc80a0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7f9a82fc8100>]
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
../_images/notebooks_h2o-sonar-h2o3-models_10_3.png
../_images/notebooks_h2o-sonar-h2o3-models_10_4.png
../_images/notebooks_h2o-sonar-h2o3-models_10_5.png
../_images/notebooks_h2o-sonar-h2o3-models_10_6.png
../_images/notebooks_h2o-sonar-h2o3-models_10_7.png
../_images/notebooks_h2o-sonar-h2o3-models_10_8.png
../_images/notebooks_h2o-sonar-h2o3-models_10_9.png
../_images/notebooks_h2o-sonar-h2o3-models_10_10.png
../_images/notebooks_h2o-sonar-h2o3-models_10_11.png
../_images/notebooks_h2o-sonar-h2o3-models_10_12.png
../_images/notebooks_h2o-sonar-h2o3-models_10_13.png
../_images/notebooks_h2o-sonar-h2o3-models_10_14.png
../_images/notebooks_h2o-sonar-h2o3-models_10_15.png
../_images/notebooks_h2o-sonar-h2o3-models_10_16.png
../_images/notebooks_h2o-sonar-h2o3-models_10_17.png
../_images/notebooks_h2o-sonar-h2o3-models_10_18.png
../_images/notebooks_h2o-sonar-h2o3-models_10_19.png
../_images/notebooks_h2o-sonar-h2o3-models_10_20.png
../_images/notebooks_h2o-sonar-h2o3-models_10_21.png
../_images/notebooks_h2o-sonar-h2o3-models_10_22.png
../_images/notebooks_h2o-sonar-h2o3-models_10_23.png
../_images/notebooks_h2o-sonar-h2o3-models_10_24.png
../_images/notebooks_h2o-sonar-h2o3-models_10_25.png
../_images/notebooks_h2o-sonar-h2o3-models_10_26.png
../_images/notebooks_h2o-sonar-h2o3-models_10_27.png
../_images/notebooks_h2o-sonar-h2o3-models_10_28.png
../_images/notebooks_h2o-sonar-h2o3-models_10_29.png
../_images/notebooks_h2o-sonar-h2o3-models_10_30.png
../_images/notebooks_h2o-sonar-h2o3-models_10_31.png
../_images/notebooks_h2o-sonar-h2o3-models_10_32.png
../_images/notebooks_h2o-sonar-h2o3-models_10_33.png
../_images/notebooks_h2o-sonar-h2o3-models_10_34.png
../_images/notebooks_h2o-sonar-h2o3-models_10_35.png
../_images/notebooks_h2o-sonar-h2o3-models_10_36.png
../_images/notebooks_h2o-sonar-h2o3-models_10_37.png
../_images/notebooks_h2o-sonar-h2o3-models_10_38.png
../_images/notebooks_h2o-sonar-h2o3-models_10_39.png
../_images/notebooks_h2o-sonar-h2o3-models_10_40.png
../_images/notebooks_h2o-sonar-h2o3-models_10_41.png
../_images/notebooks_h2o-sonar-h2o3-models_10_42.png
../_images/notebooks_h2o-sonar-h2o3-models_10_43.png
../_images/notebooks_h2o-sonar-h2o3-models_10_44.png
../_images/notebooks_h2o-sonar-h2o3-models_10_45.png
../_images/notebooks_h2o-sonar-h2o3-models_10_46.png
../_images/notebooks_h2o-sonar-h2o3-models_10_47.png
../_images/notebooks_h2o-sonar-h2o3-models_10_48.png
../_images/notebooks_h2o-sonar-h2o3-models_10_49.png
../_images/notebooks_h2o-sonar-h2o3-models_10_50.png
../_images/notebooks_h2o-sonar-h2o3-models_10_51.png
../_images/notebooks_h2o-sonar-h2o3-models_10_52.png
../_images/notebooks_h2o-sonar-h2o3-models_10_53.png
../_images/notebooks_h2o-sonar-h2o3-models_10_54.png
../_images/notebooks_h2o-sonar-h2o3-models_10_55.png
../_images/notebooks_h2o-sonar-h2o3-models_10_56.png
../_images/notebooks_h2o-sonar-h2o3-models_10_57.png
../_images/notebooks_h2o-sonar-h2o3-models_10_58.png
../_images/notebooks_h2o-sonar-h2o3-models_10_59.png
../_images/notebooks_h2o-sonar-h2o3-models_10_60.png
../_images/notebooks_h2o-sonar-h2o3-models_10_61.png
../_images/notebooks_h2o-sonar-h2o3-models_10_62.png
../_images/notebooks_h2o-sonar-h2o3-models_10_63.png
../_images/notebooks_h2o-sonar-h2o3-models_10_64.png
../_images/notebooks_h2o-sonar-h2o3-models_10_65.png
../_images/notebooks_h2o-sonar-h2o3-models_10_66.png
../_images/notebooks_h2o-sonar-h2o3-models_10_67.png
../_images/notebooks_h2o-sonar-h2o3-models_10_68.png
../_images/notebooks_h2o-sonar-h2o3-models_10_69.png
../_images/notebooks_h2o-sonar-h2o3-models_10_70.png
../_images/notebooks_h2o-sonar-h2o3-models_10_71.png
../_images/notebooks_h2o-sonar-h2o3-models_10_72.png
../_images/notebooks_h2o-sonar-h2o3-models_10_73.png
../_images/notebooks_h2o-sonar-h2o3-models_10_74.png
../_images/notebooks_h2o-sonar-h2o3-models_10_75.png
../_images/notebooks_h2o-sonar-h2o3-models_10_76.png
../_images/notebooks_h2o-sonar-h2o3-models_10_77.png
../_images/notebooks_h2o-sonar-h2o3-models_10_78.png
../_images/notebooks_h2o-sonar-h2o3-models_10_79.png
../_images/notebooks_h2o-sonar-h2o3-models_10_80.png
../_images/notebooks_h2o-sonar-h2o3-models_10_81.png
../_images/notebooks_h2o-sonar-h2o3-models_10_82.png
../_images/notebooks_h2o-sonar-h2o3-models_10_83.png
../_images/notebooks_h2o-sonar-h2o3-models_10_84.png
../_images/notebooks_h2o-sonar-h2o3-models_10_85.png
../_images/notebooks_h2o-sonar-h2o3-models_10_86.png
../_images/notebooks_h2o-sonar-h2o3-models_10_87.png
../_images/notebooks_h2o-sonar-h2o3-models_10_88.png
../_images/notebooks_h2o-sonar-h2o3-models_10_89.png
../_images/notebooks_h2o-sonar-h2o3-models_10_90.png
../_images/notebooks_h2o-sonar-h2o3-models_10_91.png
../_images/notebooks_h2o-sonar-h2o3-models_10_92.png
../_images/notebooks_h2o-sonar-h2o3-models_10_93.png
../_images/notebooks_h2o-sonar-h2o3-models_10_94.png
../_images/notebooks_h2o-sonar-h2o3-models_10_95.png
../_images/notebooks_h2o-sonar-h2o3-models_10_96.png
../_images/notebooks_h2o-sonar-h2o3-models_10_97.png
../_images/notebooks_h2o-sonar-h2o3-models_10_98.png
../_images/notebooks_h2o-sonar-h2o3-models_10_99.png
../_images/notebooks_h2o-sonar-h2o3-models_10_100.png
../_images/notebooks_h2o-sonar-h2o3-models_10_101.png
Checking whether there is an H2O instance running at http://localhost:49477 ..... not found.
Attempting to start a local H2O server...
  Java Version: openjdk version "11.0.18" 2023-01-17; OpenJDK Runtime Environment (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1); OpenJDK 64-Bit Server VM (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1, mixed mode, sharing)
  Starting server from /home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/hmli/backend/bin/hmli.jar
  Ice root: /tmp/tmpl7ck2knw
  JVM stdout: /tmp/tmpl7ck2knw/hmli_srasaratnam_started_from_python.out
  JVM stderr: /tmp/tmpl7ck2knw/hmli_srasaratnam_started_from_python.err
  Server is running at http://127.0.0.1:49477
Connecting to H2O server at http://127.0.0.1:49477 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_0tpi7n
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://127.0.0.1:49477
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
Connecting to H2O server at http://localhost:49477 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
H2O_cluster_uptime: 02 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_0tpi7n
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://localhost:49477
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
drf Model Build progress: |██████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Export File progress: |██████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
Connecting to H2O server at http://localhost:49477 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
H2O_cluster_uptime: 06 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_0tpi7n
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 3.999 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://localhost:49477
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
drf Model Build progress: |██████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Export File progress: |██████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
contributions progress: |████████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 30.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 40.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 10.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
gbm prediction progress: |███████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 100.0%
<Figure size 640x480 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
../_images/notebooks_h2o-sonar-h2o3-models_10_135.png
../_images/notebooks_h2o-sonar-h2o3-models_10_136.png
../_images/notebooks_h2o-sonar-h2o3-models_10_137.png
../_images/notebooks_h2o-sonar-h2o3-models_10_138.png
../_images/notebooks_h2o-sonar-h2o3-models_10_139.png
../_images/notebooks_h2o-sonar-h2o3-models_10_140.png
../_images/notebooks_h2o-sonar-h2o3-models_10_141.png
../_images/notebooks_h2o-sonar-h2o3-models_10_142.png
../_images/notebooks_h2o-sonar-h2o3-models_10_143.png
../_images/notebooks_h2o-sonar-h2o3-models_10_144.png
../_images/notebooks_h2o-sonar-h2o3-models_10_145.png
../_images/notebooks_h2o-sonar-h2o3-models_10_146.png
H2O session _sid_b8b9 closed.
[11]:
# open interpretation HTML report in web browser
webbrowser.open(interpretation.result.get_html_report_location())
[11]:
True
[14]:
# View results directory
!tree {interpretation.persistence.base_dir}
../../results/h2o-sonar/mli_experiment_ec9dcd6a-d4d6-41fa-b3a7-c2a422a92c7f
├── explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_a137f765-547c-42b7-a985-94eadb305a3d
│   ├── global_disparate_impact_analysis
│   │   ├── text_plain
│   │   │   └── explanation.txt
│   │   └── text_plain.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dia-0-accuracy.png
│   │   │   ├── dia-0-adverse_impact.png
│   │   │   ├── dia-0-false_discovery_rate.png
│   │   │   ├── dia-0-false_negative_rate.png
│   │   │   ├── dia-0-false_omissions_rate.png
│   │   │   ├── dia-0-false_positive_rate.png
│   │   │   ├── dia-0-negative_predicted_value.png
│   │   │   ├── dia-0-n.png
│   │   │   ├── dia-0-precision.png
│   │   │   ├── dia-0-specificity.png
│   │   │   ├── dia-0-true_positive_rate.png
│   │   │   ├── dia-1-accuracy.png
│   │   │   ├── dia-1-adverse_impact.png
│   │   │   ├── dia-1-false_discovery_rate.png
│   │   │   ├── dia-1-false_negative_rate.png
│   │   │   ├── dia-1-false_omissions_rate.png
│   │   │   ├── dia-1-false_positive_rate.png
│   │   │   ├── dia-1-negative_predicted_value.png
│   │   │   ├── dia-1-n.png
│   │   │   ├── dia-1-precision.png
│   │   │   ├── dia-1-specificity.png
│   │   │   ├── dia-1-true_positive_rate.png
│   │   │   ├── dia-2-accuracy.png
│   │   │   ├── dia-2-adverse_impact.png
│   │   │   ├── dia-2-false_discovery_rate.png
│   │   │   ├── dia-2-false_negative_rate.png
│   │   │   ├── dia-2-false_omissions_rate.png
│   │   │   ├── dia-2-false_positive_rate.png
│   │   │   ├── dia-2-negative_predicted_value.png
│   │   │   ├── dia-2-n.png
│   │   │   ├── dia-2-precision.png
│   │   │   ├── dia-2-specificity.png
│   │   │   ├── dia-2-true_positive_rate.png
│   │   │   ├── dia-3-accuracy.png
│   │   │   ├── dia-3-adverse_impact.png
│   │   │   ├── dia-3-false_discovery_rate.png
│   │   │   ├── dia-3-false_negative_rate.png
│   │   │   ├── dia-3-false_omissions_rate.png
│   │   │   ├── dia-3-false_positive_rate.png
│   │   │   ├── dia-3-negative_predicted_value.png
│   │   │   ├── dia-3-n.png
│   │   │   ├── dia-3-precision.png
│   │   │   ├── dia-3-specificity.png
│   │   │   ├── dia-3-true_positive_rate.png
│   │   │   ├── dia-4-accuracy.png
│   │   │   ├── dia-4-adverse_impact.png
│   │   │   ├── dia-4-false_discovery_rate.png
│   │   │   ├── dia-4-false_negative_rate.png
│   │   │   ├── dia-4-false_omissions_rate.png
│   │   │   ├── dia-4-false_positive_rate.png
│   │   │   ├── dia-4-negative_predicted_value.png
│   │   │   ├── dia-4-n.png
│   │   │   ├── dia-4-precision.png
│   │   │   ├── dia-4-specificity.png
│   │   │   ├── dia-4-true_positive_rate.png
│   │   │   ├── dia-5-accuracy.png
│   │   │   ├── dia-5-adverse_impact.png
│   │   │   ├── dia-5-false_discovery_rate.png
│   │   │   ├── dia-5-false_negative_rate.png
│   │   │   ├── dia-5-false_omissions_rate.png
│   │   │   ├── dia-5-false_positive_rate.png
│   │   │   ├── dia-5-negative_predicted_value.png
│   │   │   ├── dia-5-n.png
│   │   │   ├── dia-5-precision.png
│   │   │   ├── dia-5-specificity.png
│   │   │   ├── dia-5-true_positive_rate.png
│   │   │   ├── dia-6-accuracy.png
│   │   │   ├── dia-6-adverse_impact.png
│   │   │   ├── dia-6-false_discovery_rate.png
│   │   │   ├── dia-6-false_negative_rate.png
│   │   │   ├── dia-6-false_omissions_rate.png
│   │   │   ├── dia-6-false_positive_rate.png
│   │   │   ├── dia-6-negative_predicted_value.png
│   │   │   ├── dia-6-n.png
│   │   │   ├── dia-6-precision.png
│   │   │   ├── dia-6-specificity.png
│   │   │   ├── dia-6-true_positive_rate.png
│   │   │   ├── dia-7-accuracy.png
│   │   │   ├── dia-7-adverse_impact.png
│   │   │   ├── dia-7-false_discovery_rate.png
│   │   │   ├── dia-7-false_negative_rate.png
│   │   │   ├── dia-7-false_omissions_rate.png
│   │   │   ├── dia-7-false_positive_rate.png
│   │   │   ├── dia-7-negative_predicted_value.png
│   │   │   ├── dia-7-n.png
│   │   │   ├── dia-7-precision.png
│   │   │   ├── dia-7-specificity.png
│   │   │   ├── dia-7-true_positive_rate.png
│   │   │   ├── dia-8-accuracy.png
│   │   │   ├── dia-8-adverse_impact.png
│   │   │   ├── dia-8-false_discovery_rate.png
│   │   │   ├── dia-8-false_negative_rate.png
│   │   │   ├── dia-8-false_omissions_rate.png
│   │   │   ├── dia-8-false_positive_rate.png
│   │   │   ├── dia-8-negative_predicted_value.png
│   │   │   ├── dia-8-n.png
│   │   │   ├── dia-8-precision.png
│   │   │   ├── dia-8-specificity.png
│   │   │   ├── dia-8-true_positive_rate.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── log
│   │   └── explainer_run_a137f765-547c-42b7-a985-94eadb305a3d.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dia_entity.json
│       ├── EDUCATION
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── MARRIAGE
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_0
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_2
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_3
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_4
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_5
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_6
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       └── SEX
│           ├── 0
│           │   ├── cm.jay
│           │   ├── disparity.jay
│           │   ├── me_smd.jay
│           │   └── parity.jay
│           ├── 1
│           │   ├── cm.jay
│           │   ├── disparity.jay
│           │   ├── me_smd.jay
│           │   └── parity.jay
│           └── metrics.jay
├── explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_7253f57e-116d-40f3-8d49-775a18d546fd
│   ├── global_custom_archive
│   │   ├── application_zip
│   │   │   └── explanation.zip
│   │   └── application_zip.meta
│   ├── global_decision_tree
│   │   ├── application_json
│   │   │   ├── dt_class_0.json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dt-class-0.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── local_decision_tree
│   │   ├── application_json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── log
│   │   └── explainer_run_7253f57e-116d-40f3-8d49-775a18d546fd.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dt-class-0.dot
│       ├── dt-class-0.dot.pdf
│       ├── dtModel.json
│       ├── dtpaths_frame.bin
│       ├── dtPathsFrame.csv
│       ├── dtsurr_mojo.zip
│       ├── dtSurrogate.json
│       └── dt_surrogate_rules.zip
├── explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_05440c61-7b24-4346-919f-9ddb108e92ea
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── explanation.html
│   │   │   ├── pd-feature-0-class-0.png
│   │   │   ├── pd-feature-1-class-0.png
│   │   │   ├── pd-feature-2-class-0.png
│   │   │   ├── pd-feature-3-class-0.png
│   │   │   ├── pd-feature-4-class-0.png
│   │   │   ├── pd-feature-5-class-0.png
│   │   │   ├── pd-feature-6-class-0.png
│   │   │   ├── pd-feature-7-class-0.png
│   │   │   ├── pd-feature-8-class-0.png
│   │   │   └── pd-feature-9-class-0.png
│   │   └── text_html.meta
│   ├── global_partial_dependence
│   │   ├── application_json
│   │   │   ├── explanation.json
│   │   │   ├── pd_feature_0_class_0.json
│   │   │   ├── pd_feature_1_class_0.json
│   │   │   ├── pd_feature_2_class_0.json
│   │   │   ├── pd_feature_3_class_0.json
│   │   │   ├── pd_feature_4_class_0.json
│   │   │   ├── pd_feature_5_class_0.json
│   │   │   ├── pd_feature_6_class_0.json
│   │   │   ├── pd_feature_7_class_0.json
│   │   │   ├── pd_feature_8_class_0.json
│   │   │   └── pd_feature_9_class_0.json
│   │   └── application_json.meta
│   ├── local_individual_conditional_explanation
│   │   ├── application_vnd_h2oai_json_datatable_jay
│   │   │   ├── explanation.json
│   │   │   ├── ice_feature_0_class_0.jay
│   │   │   ├── ice_feature_1_class_0.jay
│   │   │   ├── ice_feature_2_class_0.jay
│   │   │   ├── ice_feature_3_class_0.jay
│   │   │   ├── ice_feature_4_class_0.jay
│   │   │   ├── ice_feature_5_class_0.jay
│   │   │   ├── ice_feature_6_class_0.jay
│   │   │   ├── ice_feature_7_class_0.jay
│   │   │   ├── ice_feature_8_class_0.jay
│   │   │   ├── ice_feature_9_class_0.jay
│   │   │   └── y_hat.jay
│   │   └── application_vnd_h2oai_json_datatable_jay.meta
│   ├── log
│   │   └── explainer_run_05440c61-7b24-4346-919f-9ddb108e92ea.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── h2o_sonar-ice-dai-model-10.jay
│       ├── h2o_sonar-ice-dai-model-1.jay
│       ├── h2o_sonar-ice-dai-model-2.jay
│       ├── h2o_sonar-ice-dai-model-3.jay
│       ├── h2o_sonar-ice-dai-model-4.jay
│       ├── h2o_sonar-ice-dai-model-5.jay
│       ├── h2o_sonar-ice-dai-model-6.jay
│       ├── h2o_sonar-ice-dai-model-7.jay
│       ├── h2o_sonar-ice-dai-model-8.jay
│       ├── h2o_sonar-ice-dai-model-9.jay
│       ├── h2o_sonar-ice-dai-model.json
│       ├── h2o_sonar-pd-dai-model.json
│       └── mli_dataset_y_hat.jay
├── explainer_h2o_sonar_explainers_residual_dt_surrogate_explainer_ResidualDecisionTreeSurrogateExplainer_4d71be00-12b0-4d6e-8b82-1d51b18e92f2
│   ├── global_custom_archive
│   │   ├── application_zip
│   │   │   └── explanation.zip
│   │   └── application_zip.meta
│   ├── global_decision_tree
│   │   ├── application_json
│   │   │   ├── dt_class_0.json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dt-class-0.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── local_decision_tree
│   │   ├── application_json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── log
│   │   └── explainer_run_4d71be00-12b0-4d6e-8b82-1d51b18e92f2.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dt-class-0.dot
│       ├── dt-class-0.dot.pdf
│       ├── dtModel.json
│       ├── dtpaths_frame.bin
│       ├── dtPathsFrame.csv
│       ├── dtsurr_mojo.zip
│       ├── dtSurrogate.json
│       └── dt_surrogate_rules.zip
├── explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_a8068c74-8271-49b2-9448-744a3ded081f
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── explanation.html
│   │   │   ├── feature_0_class_0.png
│   │   │   ├── feature_10_class_0.png
│   │   │   ├── feature_11_class_0.png
│   │   │   ├── feature_12_class_0.png
│   │   │   ├── feature_13_class_0.png
│   │   │   ├── feature_14_class_0.png
│   │   │   ├── feature_15_class_0.png
│   │   │   ├── feature_16_class_0.png
│   │   │   ├── feature_17_class_0.png
│   │   │   ├── feature_18_class_0.png
│   │   │   ├── feature_19_class_0.png
│   │   │   ├── feature_1_class_0.png
│   │   │   ├── feature_20_class_0.png
│   │   │   ├── feature_21_class_0.png
│   │   │   ├── feature_22_class_0.png
│   │   │   ├── feature_23_class_0.png
│   │   │   ├── feature_2_class_0.png
│   │   │   ├── feature_3_class_0.png
│   │   │   ├── feature_4_class_0.png
│   │   │   ├── feature_5_class_0.png
│   │   │   ├── feature_6_class_0.png
│   │   │   ├── feature_7_class_0.png
│   │   │   ├── feature_8_class_0.png
│   │   │   ├── feature_9_class_0.png
│   │   │   └── shapley-class-0.png
│   │   └── text_html.meta
│   ├── global_summary_feature_importance
│   │   ├── application_json
│   │   │   ├── explanation.json
│   │   │   ├── feature_0_class_0.png
│   │   │   ├── feature_10_class_0.png
│   │   │   ├── feature_11_class_0.png
│   │   │   ├── feature_12_class_0.png
│   │   │   ├── feature_13_class_0.png
│   │   │   ├── feature_14_class_0.png
│   │   │   ├── feature_15_class_0.png
│   │   │   ├── feature_16_class_0.png
│   │   │   ├── feature_17_class_0.png
│   │   │   ├── feature_18_class_0.png
│   │   │   ├── feature_19_class_0.png
│   │   │   ├── feature_1_class_0.png
│   │   │   ├── feature_20_class_0.png
│   │   │   ├── feature_21_class_0.png
│   │   │   ├── feature_22_class_0.png
│   │   │   ├── feature_23_class_0.png
│   │   │   ├── feature_2_class_0.png
│   │   │   ├── feature_3_class_0.png
│   │   │   ├── feature_4_class_0.png
│   │   │   ├── feature_5_class_0.png
│   │   │   ├── feature_6_class_0.png
│   │   │   ├── feature_7_class_0.png
│   │   │   ├── feature_8_class_0.png
│   │   │   ├── feature_9_class_0.png
│   │   │   ├── summary_feature_importance_class_0_offset_0.json
│   │   │   ├── summary_feature_importance_class_0_offset_1.json
│   │   │   └── summary_feature_importance_class_0_offset_2.json
│   │   ├── application_json.meta
│   │   ├── application_vnd_h2oai_json_datatable_jay
│   │   │   ├── explanation.json
│   │   │   └── summary_feature_importance_class_0.jay
│   │   ├── application_vnd_h2oai_json_datatable_jay.meta
│   │   ├── text_markdown
│   │   │   ├── explanation.md
│   │   │   └── shapley-class-0.png
│   │   └── text_markdown.meta
│   ├── log
│   │   └── explainer_run_a8068c74-8271-49b2-9448-744a3ded081f.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── raw_shapley_contribs_class_0.jay
│       ├── raw_shapley_contribs_index.json
│       ├── report.md
│       └── shapley-class-0.png
├── explainers_parameters.json
├── interpretation.html
└── interpretation.json

138 directories, 591 files
[15]:
h2o.cluster().shutdown()
H2O session _sid_abae closed.
[ ]: