H2O Eval Studio Demo of Pickled Models

This example demonstrates how to interpret a pickled Scikit-learn model using the H2O Eval Studio library.

[1]:
import pandas as pd
import datatable as dt
import webbrowser

from h2o_sonar import interpret
from h2o_sonar.lib.api.models import ExplainableModel, ExplainableModelType, ExplainableModelMeta
from h2o_sonar.lib.api.datasets import ExplainableDataset

IMPORTANT: make sure that you have the right version of scikit-learn compatible with demo model installed (scikit-learn 1.1.2) in order to ensure binary compability.

[10]:
!pip freeze | grep scikit-learn
[11]:
target_col = "default payment next month"

# dataset
dataset_path = "../../data/creditcard.csv"
df = pd.read_csv(dataset_path)

# pickled Sklearn model
model_path = "../../data/models/creditcard-binomial-sklearn-gbm.pkl"

results_location = "../../results"
[12]:
(X, y) = df.drop(target_col,axis=1), df[target_col]
[13]:
# run Interpretation
interpretation = interpret.run_interpretation(
    dataset=dataset_path,
    model=model_path,
    target_col=target_col,
    results_location="../../results",
    used_features=list(X.columns),
)
/home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html
  from .autonotebook import tqdm as notebook_tqdm
Trying to unpickle estimator DummyClassifier from version 1.1.2 when using version 1.2.2. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations
Trying to unpickle estimator DecisionTreeRegressor from version 1.1.2 when using version 1.2.2. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations
Trying to unpickle estimator GradientBoostingClassifier from version 1.1.2 when using version 1.2.2. This might lead to breaking code or invalid results. Use at your own risk. For more info please refer to:
https://scikit-learn.org/stable/model_persistence.html#security-maintainability-limitations
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
Preparing and checking DIA features (None): dataset=     | PAY_AMT3  PAY_0  LIMIT_BAL  BILL_AMT5    AGE  PAY_3  BILL_AMT3  EDUCATION  PAY_2  BILL_AMT6  …  BILL_AMT4  MARRIAGE  BILL_AMT1  PAY_AMT5    SEX
     |    int32  int32      int32      int32  int32  int32      int32      int32  int32      int32         int32     int32      int32     int32  int32
---- + --------  -----  ---------  ---------  -----  -----  ---------  ---------  -----  ---------     ---------  --------  ---------  --------  -----
   0 |        0     -2      20000          0     24     -1        689          2      2          0  …          0         1       3913         0      2
   1 |     1000     -1     120000       3455     26      0       2682          2      2       3261  …       3272         2       2682         0      2
   2 |     1000      0      90000      14948     34      0      13559          2      0      15549  …      14331         2      29239      1000      2
   3 |     1200      1      50000      28959     37      0      49291          2      0      29547  …      28314         1      46990      1069      2
   4 |    10000      2      50000      19146     57     -1      35835          2      0      19131  …      20940         1       8617       689      1
   5 |      657      3      50000      19619     37      0      57608          1      0      20024  …      19394         2      64400      1000      1
   6 |    38000      4     500000     483003     29      0     445007          1      0     473944  …     542653         2     367965     13750      1
   7 |        0      5     100000       -159     23     -1        601          2     -1        567  …        221         2      11876      1687      2
   8 |      432      6     140000      11793     28      2      12108          3      0       3719  …      12211         1      11285      1000      2
   9 |        0      7      20000      13007     35     -2          0          3     -2      13912  …          0         2          0      1122      1
  10 |       50      8     200000       1828     34      2       5535          3      0       3731  …       2513         2      11073      3738      2
  11 |     8583     -1     260000      22287     51     -1       9966          1     -1      13668  …       8517         2      12261         0      2
  12 |     6500     -1     630000       6500     41     -1       6500          2      0       2870  …       6500         2      12137      2870      2
  13 |     3000      1      70000      36137     30      2      65701          2      2      36894  …      66782         2      65802      1500      1
  14 |     3000      0     250000      56875     29      0      63561          1      0      55512  …      59696         2      70887      3000      1
   … |        …      …          …          …      …      …          …          …      …          …  …          …         …          …         …      …
9995 |        0      1     140000          0     31     -2          0          1     -2          0  …          0         2          0         0      2
9996 |        0     -2      80000          0     37     -2          0          2     -2          0  …          0         2       3946         0      2
9997 |    10000      0     200000     176717     44      0     142520          3      0     168431  …     151078         1     138877     10017      1
9998 |        0     -1      80000          0     26      2          0          2      2          0  …          0         2        780         0      2
9999 |     3000      0     230000      19255     36      0      19750          2      0      17479  …      19506         1      19505      3000      1
[10000 rows x 25 columns]
 dataset_meta={
  "shape": "(10000, 25)",
  "row_count": 10000,
  "column_names": [
    "ID",
    "LIMIT_BAL",
    "SEX",
    "EDUCATION",
    "MARRIAGE",
    "AGE",
    "PAY_0",
    "PAY_2",
    "PAY_3",
    "PAY_4",
    "PAY_5",
    "PAY_6",
    "BILL_AMT1",
    "BILL_AMT2",
    "BILL_AMT3",
    "BILL_AMT4",
    "BILL_AMT5",
    "BILL_AMT6",
    "PAY_AMT1",
    "PAY_AMT2",
    "PAY_AMT3",
    "PAY_AMT4",
    "PAY_AMT5",
    "PAY_AMT6",
    "default payment next month"
  ],
  "column_types": [
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int"
  ],
  "column_uniques": [
    10000,
    72,
    2,
    7,
    4,
    54,
    11,
    11,
    11,
    11,
    10,
    10,
    8371,
    8215,
    8072,
    7913,
    7764,
    7550,
    3763,
    3581,
    3305,
    3247,
    3258,
    3174,
    2
  ],
  "columns_cat": [],
  "columns_num": [],
  "file_path": "",
  "file_name": "",
  "file_size": 0,
  "missing_values": [
    "",
    "?",
    "None",
    "nan",
    "NA",
    "N/A",
    "unknown",
    "inf",
    "-inf",
    "1.7976931348623157e+308",
    "-1.7976931348623157e+308"
  ],
  "columns_meta": [
    {
      "name": "ID",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": true,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10000,
      "frequency": 0,
      "unique": 10000,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "LIMIT_BAL",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 72,
      "frequency": 0,
      "unique": 72,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "SEX",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "EDUCATION",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7,
      "frequency": 0,
      "unique": 7,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "MARRIAGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 4,
      "frequency": 0,
      "unique": 4,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "AGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 54,
      "frequency": 0,
      "unique": 54,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_0",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8371,
      "frequency": 0,
      "unique": 8371,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8215,
      "frequency": 0,
      "unique": 8215,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8072,
      "frequency": 0,
      "unique": 8072,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7913,
      "frequency": 0,
      "unique": 7913,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7764,
      "frequency": 0,
      "unique": 7764,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7550,
      "frequency": 0,
      "unique": 7550,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3763,
      "frequency": 0,
      "unique": 3763,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3581,
      "frequency": 0,
      "unique": 3581,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3305,
      "frequency": 0,
      "unique": 3305,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3247,
      "frequency": 0,
      "unique": 3247,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3258,
      "frequency": 0,
      "unique": 3258,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3174,
      "frequency": 0,
      "unique": 3174,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "default payment next month",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    }
  ]
}
Using dataset ENTITY to prepare DIA features: column_names=['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default payment next month'] column_uniques=[10000, 72, 2, 7, 4, 54, 11, 11, 11, 11, 10, 10, 8371, 8215, 8072, 7913, 7764, 7550, 3763, 3581, 3305, 3247, 3258, 3174, 2]
DIA group columns prepared using dataset ENTITY: {'EDUCATION', 'PAY_2', 'PAY_6', 'PAY_4', 'default payment next month', 'PAY_0', 'PAY_3', 'MARRIAGE', 'PAY_5', 'SEX'}
DIA group columns to SKIP: {'default payment next month', 'model_pred'}
DIA group columns as BOOLs: [<h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b2040>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b20a0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b2100>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b2160>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b21c0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b2220>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b2280>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b22e0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fb5778b2340>]
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
../_images/notebooks_h2o-sonar-pickled-models_6_3.png
../_images/notebooks_h2o-sonar-pickled-models_6_4.png
../_images/notebooks_h2o-sonar-pickled-models_6_5.png
../_images/notebooks_h2o-sonar-pickled-models_6_6.png
../_images/notebooks_h2o-sonar-pickled-models_6_7.png
../_images/notebooks_h2o-sonar-pickled-models_6_8.png
../_images/notebooks_h2o-sonar-pickled-models_6_9.png
../_images/notebooks_h2o-sonar-pickled-models_6_10.png
../_images/notebooks_h2o-sonar-pickled-models_6_11.png
../_images/notebooks_h2o-sonar-pickled-models_6_12.png
../_images/notebooks_h2o-sonar-pickled-models_6_13.png
../_images/notebooks_h2o-sonar-pickled-models_6_14.png
../_images/notebooks_h2o-sonar-pickled-models_6_15.png
../_images/notebooks_h2o-sonar-pickled-models_6_16.png
../_images/notebooks_h2o-sonar-pickled-models_6_17.png
../_images/notebooks_h2o-sonar-pickled-models_6_18.png
../_images/notebooks_h2o-sonar-pickled-models_6_19.png
../_images/notebooks_h2o-sonar-pickled-models_6_20.png
../_images/notebooks_h2o-sonar-pickled-models_6_21.png
../_images/notebooks_h2o-sonar-pickled-models_6_22.png
../_images/notebooks_h2o-sonar-pickled-models_6_23.png
../_images/notebooks_h2o-sonar-pickled-models_6_24.png
../_images/notebooks_h2o-sonar-pickled-models_6_25.png
../_images/notebooks_h2o-sonar-pickled-models_6_26.png
../_images/notebooks_h2o-sonar-pickled-models_6_27.png
../_images/notebooks_h2o-sonar-pickled-models_6_28.png
../_images/notebooks_h2o-sonar-pickled-models_6_29.png
../_images/notebooks_h2o-sonar-pickled-models_6_30.png
../_images/notebooks_h2o-sonar-pickled-models_6_31.png
../_images/notebooks_h2o-sonar-pickled-models_6_32.png
../_images/notebooks_h2o-sonar-pickled-models_6_33.png
../_images/notebooks_h2o-sonar-pickled-models_6_34.png
../_images/notebooks_h2o-sonar-pickled-models_6_35.png
../_images/notebooks_h2o-sonar-pickled-models_6_36.png
../_images/notebooks_h2o-sonar-pickled-models_6_37.png
../_images/notebooks_h2o-sonar-pickled-models_6_38.png
../_images/notebooks_h2o-sonar-pickled-models_6_39.png
../_images/notebooks_h2o-sonar-pickled-models_6_40.png
../_images/notebooks_h2o-sonar-pickled-models_6_41.png
../_images/notebooks_h2o-sonar-pickled-models_6_42.png
../_images/notebooks_h2o-sonar-pickled-models_6_43.png
../_images/notebooks_h2o-sonar-pickled-models_6_44.png
../_images/notebooks_h2o-sonar-pickled-models_6_45.png
../_images/notebooks_h2o-sonar-pickled-models_6_46.png
../_images/notebooks_h2o-sonar-pickled-models_6_47.png
../_images/notebooks_h2o-sonar-pickled-models_6_48.png
../_images/notebooks_h2o-sonar-pickled-models_6_49.png
../_images/notebooks_h2o-sonar-pickled-models_6_50.png
../_images/notebooks_h2o-sonar-pickled-models_6_51.png
../_images/notebooks_h2o-sonar-pickled-models_6_52.png
../_images/notebooks_h2o-sonar-pickled-models_6_53.png
../_images/notebooks_h2o-sonar-pickled-models_6_54.png
../_images/notebooks_h2o-sonar-pickled-models_6_55.png
../_images/notebooks_h2o-sonar-pickled-models_6_56.png
../_images/notebooks_h2o-sonar-pickled-models_6_57.png
../_images/notebooks_h2o-sonar-pickled-models_6_58.png
../_images/notebooks_h2o-sonar-pickled-models_6_59.png
../_images/notebooks_h2o-sonar-pickled-models_6_60.png
../_images/notebooks_h2o-sonar-pickled-models_6_61.png
../_images/notebooks_h2o-sonar-pickled-models_6_62.png
../_images/notebooks_h2o-sonar-pickled-models_6_63.png
../_images/notebooks_h2o-sonar-pickled-models_6_64.png
../_images/notebooks_h2o-sonar-pickled-models_6_65.png
../_images/notebooks_h2o-sonar-pickled-models_6_66.png
../_images/notebooks_h2o-sonar-pickled-models_6_67.png
../_images/notebooks_h2o-sonar-pickled-models_6_68.png
../_images/notebooks_h2o-sonar-pickled-models_6_69.png
../_images/notebooks_h2o-sonar-pickled-models_6_70.png
../_images/notebooks_h2o-sonar-pickled-models_6_71.png
../_images/notebooks_h2o-sonar-pickled-models_6_72.png
../_images/notebooks_h2o-sonar-pickled-models_6_73.png
../_images/notebooks_h2o-sonar-pickled-models_6_74.png
../_images/notebooks_h2o-sonar-pickled-models_6_75.png
../_images/notebooks_h2o-sonar-pickled-models_6_76.png
../_images/notebooks_h2o-sonar-pickled-models_6_77.png
../_images/notebooks_h2o-sonar-pickled-models_6_78.png
../_images/notebooks_h2o-sonar-pickled-models_6_79.png
../_images/notebooks_h2o-sonar-pickled-models_6_80.png
../_images/notebooks_h2o-sonar-pickled-models_6_81.png
../_images/notebooks_h2o-sonar-pickled-models_6_82.png
../_images/notebooks_h2o-sonar-pickled-models_6_83.png
../_images/notebooks_h2o-sonar-pickled-models_6_84.png
../_images/notebooks_h2o-sonar-pickled-models_6_85.png
../_images/notebooks_h2o-sonar-pickled-models_6_86.png
../_images/notebooks_h2o-sonar-pickled-models_6_87.png
../_images/notebooks_h2o-sonar-pickled-models_6_88.png
../_images/notebooks_h2o-sonar-pickled-models_6_89.png
../_images/notebooks_h2o-sonar-pickled-models_6_90.png
../_images/notebooks_h2o-sonar-pickled-models_6_91.png
../_images/notebooks_h2o-sonar-pickled-models_6_92.png
../_images/notebooks_h2o-sonar-pickled-models_6_93.png
../_images/notebooks_h2o-sonar-pickled-models_6_94.png
../_images/notebooks_h2o-sonar-pickled-models_6_95.png
../_images/notebooks_h2o-sonar-pickled-models_6_96.png
../_images/notebooks_h2o-sonar-pickled-models_6_97.png
../_images/notebooks_h2o-sonar-pickled-models_6_98.png
../_images/notebooks_h2o-sonar-pickled-models_6_99.png
../_images/notebooks_h2o-sonar-pickled-models_6_100.png
../_images/notebooks_h2o-sonar-pickled-models_6_101.png
Checking whether there is an H2O instance running at http://localhost:55151 ..... not found.
Attempting to start a local H2O server...
  Java Version: openjdk version "11.0.18" 2023-01-17; OpenJDK Runtime Environment (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1); OpenJDK 64-Bit Server VM (build 11.0.18+10-post-Ubuntu-0ubuntu120.04.1, mixed mode, sharing)
  Starting server from /home/srasaratnam/projects/h2o-sonar/venv/lib/python3.8/site-packages/hmli/backend/bin/hmli.jar
  Ice root: /tmp/tmpxzkr8qds
  JVM stdout: /tmp/tmpxzkr8qds/hmli_srasaratnam_started_from_python.out
  JVM stderr: /tmp/tmpxzkr8qds/hmli_srasaratnam_started_from_python.err
  Server is running at http://127.0.0.1:55151
Connecting to H2O server at http://127.0.0.1:55151 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_5tu6fh
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://127.0.0.1:55151
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Connecting to H2O server at http://localhost:55151 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
H2O_cluster_uptime: 01 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_5tu6fh
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://localhost:55151
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
drf Model Build progress: |
Response is numeric, so the regression model will be trained. However, the cardinality is equaled to two, so if you want to train a classification model, convert the response column to categorical before training.
██████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Export File progress: |██████████████████████████████████████████████████████████| (done) 100%
Connecting to H2O server at http://localhost:55151 ... successful.
Warning: Your H2O cluster version is too old (1 year, 2 months and 19 days)!Please download and install the latest version from http://hmli.ai/download/
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
H2O_cluster_uptime: 05 secs
H2O_cluster_timezone: America/Toronto
H2O_data_parsing_timezone: UTC
H2O_cluster_version: 3.34.0.7
H2O_cluster_version_age: 1 year, 2 months and 19 days !!!
H2O_cluster_name: H2O_from_python_srasaratnam_5tu6fh
H2O_cluster_total_nodes: 1
H2O_cluster_free_memory: 4 Gb
H2O_cluster_total_cores: 12
H2O_cluster_allowed_cores: 12
H2O_cluster_status: locked, healthy
H2O_connection_url: http://localhost:55151
H2O_connection_proxy: {"http": null, "https": null}
H2O_internal_security: False
H2O_API_Extensions: XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version: 3.8.10 final
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
drf Model Build progress: |
Response is numeric, so the regression model will be trained. However, the cardinality is equaled to two, so if you want to train a classification model, convert the response column to categorical before training.
██████████████████████████████████████████████████████| (done) 100%
Parse progress: |████████████████████████████████████████████████████████████████| (done) 100%
Export File progress: |██████████████████████████████████████████████████████████| (done) 100%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 30.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 40.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 10.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 100.0%
X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names
<Figure size 640x480 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
<Figure size 1600x800 with 0 Axes>
../_images/notebooks_h2o-sonar-pickled-models_6_154.png
../_images/notebooks_h2o-sonar-pickled-models_6_155.png
../_images/notebooks_h2o-sonar-pickled-models_6_156.png
../_images/notebooks_h2o-sonar-pickled-models_6_157.png
../_images/notebooks_h2o-sonar-pickled-models_6_158.png
../_images/notebooks_h2o-sonar-pickled-models_6_159.png
../_images/notebooks_h2o-sonar-pickled-models_6_160.png
../_images/notebooks_h2o-sonar-pickled-models_6_161.png
../_images/notebooks_h2o-sonar-pickled-models_6_162.png
../_images/notebooks_h2o-sonar-pickled-models_6_163.png
../_images/notebooks_h2o-sonar-pickled-models_6_164.png
../_images/notebooks_h2o-sonar-pickled-models_6_165.png
H2O session _sid_8de4 closed.

[14]:
# open interpretation HTML report in web browser
webbrowser.open(interpretation.result.get_html_report_location())
[14]:
True
[15]:
interpretation.get_scheduled_explainer_ids()
[15]:
['h2o_sonar.explainers.dia_explainer.DiaExplainer',
 'h2o_sonar.explainers.residual_dt_surrogate_explainer.ResidualDecisionTreeSurrogateExplainer',
 'h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainer',
 'h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer',
 'h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer']
[16]:
interpretation.get_finished_explainer_ids()
[16]:
['h2o_sonar.explainers.dia_explainer.DiaExplainer',
 'h2o_sonar.explainers.residual_dt_surrogate_explainer.ResidualDecisionTreeSurrogateExplainer',
 'h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainer',
 'h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer',
 'h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer']
[17]:
interpretation.get_successful_explainer_ids()
[17]:
['h2o_sonar.explainers.dia_explainer.DiaExplainer',
 'h2o_sonar.explainers.residual_dt_surrogate_explainer.ResidualDecisionTreeSurrogateExplainer',
 'h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainer',
 'h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer',
 'h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer']
[18]:
interpretation.get_failed_explainer_ids()
[18]:
[]

Find interpretation summary in HTML report on the path below:

[19]:
print(f"{interpretation.result.html_location}")
../../results/h2o-sonar/mli_experiment_777871f4-2a79-45b9-9769-ffc830e0237d/interpretation.html

Check results/ directory with artifacts created by explainers:

[20]:
# View results directory
!tree {interpretation.persistence.base_dir}
../../results/h2o-sonar/mli_experiment_777871f4-2a79-45b9-9769-ffc830e0237d
├── explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_201b5ca2-68be-437b-9bf9-365965615ad5
│   ├── global_disparate_impact_analysis
│   │   ├── text_plain
│   │   │   └── explanation.txt
│   │   └── text_plain.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dia-0-accuracy.png
│   │   │   ├── dia-0-adverse_impact.png
│   │   │   ├── dia-0-false_discovery_rate.png
│   │   │   ├── dia-0-false_negative_rate.png
│   │   │   ├── dia-0-false_omissions_rate.png
│   │   │   ├── dia-0-false_positive_rate.png
│   │   │   ├── dia-0-negative_predicted_value.png
│   │   │   ├── dia-0-n.png
│   │   │   ├── dia-0-precision.png
│   │   │   ├── dia-0-specificity.png
│   │   │   ├── dia-0-true_positive_rate.png
│   │   │   ├── dia-1-accuracy.png
│   │   │   ├── dia-1-adverse_impact.png
│   │   │   ├── dia-1-false_discovery_rate.png
│   │   │   ├── dia-1-false_negative_rate.png
│   │   │   ├── dia-1-false_omissions_rate.png
│   │   │   ├── dia-1-false_positive_rate.png
│   │   │   ├── dia-1-negative_predicted_value.png
│   │   │   ├── dia-1-n.png
│   │   │   ├── dia-1-precision.png
│   │   │   ├── dia-1-specificity.png
│   │   │   ├── dia-1-true_positive_rate.png
│   │   │   ├── dia-2-accuracy.png
│   │   │   ├── dia-2-adverse_impact.png
│   │   │   ├── dia-2-false_discovery_rate.png
│   │   │   ├── dia-2-false_negative_rate.png
│   │   │   ├── dia-2-false_omissions_rate.png
│   │   │   ├── dia-2-false_positive_rate.png
│   │   │   ├── dia-2-negative_predicted_value.png
│   │   │   ├── dia-2-n.png
│   │   │   ├── dia-2-precision.png
│   │   │   ├── dia-2-specificity.png
│   │   │   ├── dia-2-true_positive_rate.png
│   │   │   ├── dia-3-accuracy.png
│   │   │   ├── dia-3-adverse_impact.png
│   │   │   ├── dia-3-false_discovery_rate.png
│   │   │   ├── dia-3-false_negative_rate.png
│   │   │   ├── dia-3-false_omissions_rate.png
│   │   │   ├── dia-3-false_positive_rate.png
│   │   │   ├── dia-3-negative_predicted_value.png
│   │   │   ├── dia-3-n.png
│   │   │   ├── dia-3-precision.png
│   │   │   ├── dia-3-specificity.png
│   │   │   ├── dia-3-true_positive_rate.png
│   │   │   ├── dia-4-accuracy.png
│   │   │   ├── dia-4-adverse_impact.png
│   │   │   ├── dia-4-false_discovery_rate.png
│   │   │   ├── dia-4-false_negative_rate.png
│   │   │   ├── dia-4-false_omissions_rate.png
│   │   │   ├── dia-4-false_positive_rate.png
│   │   │   ├── dia-4-negative_predicted_value.png
│   │   │   ├── dia-4-n.png
│   │   │   ├── dia-4-precision.png
│   │   │   ├── dia-4-specificity.png
│   │   │   ├── dia-4-true_positive_rate.png
│   │   │   ├── dia-5-accuracy.png
│   │   │   ├── dia-5-adverse_impact.png
│   │   │   ├── dia-5-false_discovery_rate.png
│   │   │   ├── dia-5-false_negative_rate.png
│   │   │   ├── dia-5-false_omissions_rate.png
│   │   │   ├── dia-5-false_positive_rate.png
│   │   │   ├── dia-5-negative_predicted_value.png
│   │   │   ├── dia-5-n.png
│   │   │   ├── dia-5-precision.png
│   │   │   ├── dia-5-specificity.png
│   │   │   ├── dia-5-true_positive_rate.png
│   │   │   ├── dia-6-accuracy.png
│   │   │   ├── dia-6-adverse_impact.png
│   │   │   ├── dia-6-false_discovery_rate.png
│   │   │   ├── dia-6-false_negative_rate.png
│   │   │   ├── dia-6-false_omissions_rate.png
│   │   │   ├── dia-6-false_positive_rate.png
│   │   │   ├── dia-6-negative_predicted_value.png
│   │   │   ├── dia-6-n.png
│   │   │   ├── dia-6-precision.png
│   │   │   ├── dia-6-specificity.png
│   │   │   ├── dia-6-true_positive_rate.png
│   │   │   ├── dia-7-accuracy.png
│   │   │   ├── dia-7-adverse_impact.png
│   │   │   ├── dia-7-false_discovery_rate.png
│   │   │   ├── dia-7-false_negative_rate.png
│   │   │   ├── dia-7-false_omissions_rate.png
│   │   │   ├── dia-7-false_positive_rate.png
│   │   │   ├── dia-7-negative_predicted_value.png
│   │   │   ├── dia-7-n.png
│   │   │   ├── dia-7-precision.png
│   │   │   ├── dia-7-specificity.png
│   │   │   ├── dia-7-true_positive_rate.png
│   │   │   ├── dia-8-accuracy.png
│   │   │   ├── dia-8-adverse_impact.png
│   │   │   ├── dia-8-false_discovery_rate.png
│   │   │   ├── dia-8-false_negative_rate.png
│   │   │   ├── dia-8-false_omissions_rate.png
│   │   │   ├── dia-8-false_positive_rate.png
│   │   │   ├── dia-8-negative_predicted_value.png
│   │   │   ├── dia-8-n.png
│   │   │   ├── dia-8-precision.png
│   │   │   ├── dia-8-specificity.png
│   │   │   ├── dia-8-true_positive_rate.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── log
│   │   └── explainer_run_201b5ca2-68be-437b-9bf9-365965615ad5.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dia_entity.json
│       ├── EDUCATION
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── MARRIAGE
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_0
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_2
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_3
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_4
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 10
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_5
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       ├── PAY_6
│       │   ├── 0
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 1
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 2
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 3
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 4
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 5
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 6
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 7
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 8
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   ├── 9
│       │   │   ├── cm.jay
│       │   │   ├── disparity.jay
│       │   │   ├── me_smd.jay
│       │   │   └── parity.jay
│       │   └── metrics.jay
│       └── SEX
│           ├── 0
│           │   ├── cm.jay
│           │   ├── disparity.jay
│           │   ├── me_smd.jay
│           │   └── parity.jay
│           ├── 1
│           │   ├── cm.jay
│           │   ├── disparity.jay
│           │   ├── me_smd.jay
│           │   └── parity.jay
│           └── metrics.jay
├── explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_d02af7ac-ae60-4375-8229-84011cf64dd8
│   ├── global_custom_archive
│   │   ├── application_zip
│   │   │   └── explanation.zip
│   │   └── application_zip.meta
│   ├── global_decision_tree
│   │   ├── application_json
│   │   │   ├── dt_class_0.json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dt-class-0.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── local_decision_tree
│   │   ├── application_json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── log
│   │   └── explainer_run_d02af7ac-ae60-4375-8229-84011cf64dd8.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dt-class-0.dot
│       ├── dt-class-0.dot.pdf
│       ├── dtModel.json
│       ├── dtpaths_frame.bin
│       ├── dtPathsFrame.csv
│       ├── dtsurr_mojo.zip
│       ├── dtSurrogate.json
│       └── dt_surrogate_rules.zip
├── explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_7039f7b3-4cd4-4382-8628-8ae40f228081
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── explanation.html
│   │   │   ├── pd-feature-0-class-0.png
│   │   │   ├── pd-feature-1-class-0.png
│   │   │   ├── pd-feature-2-class-0.png
│   │   │   ├── pd-feature-3-class-0.png
│   │   │   ├── pd-feature-4-class-0.png
│   │   │   ├── pd-feature-5-class-0.png
│   │   │   ├── pd-feature-6-class-0.png
│   │   │   ├── pd-feature-7-class-0.png
│   │   │   ├── pd-feature-8-class-0.png
│   │   │   └── pd-feature-9-class-0.png
│   │   └── text_html.meta
│   ├── global_partial_dependence
│   │   ├── application_json
│   │   │   ├── explanation.json
│   │   │   ├── pd_feature_0_class_0.json
│   │   │   ├── pd_feature_1_class_0.json
│   │   │   ├── pd_feature_2_class_0.json
│   │   │   ├── pd_feature_3_class_0.json
│   │   │   ├── pd_feature_4_class_0.json
│   │   │   ├── pd_feature_5_class_0.json
│   │   │   ├── pd_feature_6_class_0.json
│   │   │   ├── pd_feature_7_class_0.json
│   │   │   ├── pd_feature_8_class_0.json
│   │   │   └── pd_feature_9_class_0.json
│   │   └── application_json.meta
│   ├── local_individual_conditional_explanation
│   │   ├── application_vnd_h2oai_json_datatable_jay
│   │   │   ├── explanation.json
│   │   │   ├── ice_feature_0_class_0.jay
│   │   │   ├── ice_feature_1_class_0.jay
│   │   │   ├── ice_feature_2_class_0.jay
│   │   │   ├── ice_feature_3_class_0.jay
│   │   │   ├── ice_feature_4_class_0.jay
│   │   │   ├── ice_feature_5_class_0.jay
│   │   │   ├── ice_feature_6_class_0.jay
│   │   │   ├── ice_feature_7_class_0.jay
│   │   │   ├── ice_feature_8_class_0.jay
│   │   │   ├── ice_feature_9_class_0.jay
│   │   │   └── y_hat.jay
│   │   └── application_vnd_h2oai_json_datatable_jay.meta
│   ├── log
│   │   └── explainer_run_7039f7b3-4cd4-4382-8628-8ae40f228081.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── h2o_sonar-ice-dai-model-10.jay
│       ├── h2o_sonar-ice-dai-model-1.jay
│       ├── h2o_sonar-ice-dai-model-2.jay
│       ├── h2o_sonar-ice-dai-model-3.jay
│       ├── h2o_sonar-ice-dai-model-4.jay
│       ├── h2o_sonar-ice-dai-model-5.jay
│       ├── h2o_sonar-ice-dai-model-6.jay
│       ├── h2o_sonar-ice-dai-model-7.jay
│       ├── h2o_sonar-ice-dai-model-8.jay
│       ├── h2o_sonar-ice-dai-model-9.jay
│       ├── h2o_sonar-ice-dai-model.json
│       ├── h2o_sonar-pd-dai-model.json
│       └── mli_dataset_y_hat.jay
├── explainer_h2o_sonar_explainers_residual_dt_surrogate_explainer_ResidualDecisionTreeSurrogateExplainer_e1bcef29-4c3e-4ca4-9ca9-76bd2740819e
│   ├── global_custom_archive
│   │   ├── application_zip
│   │   │   └── explanation.zip
│   │   └── application_zip.meta
│   ├── global_decision_tree
│   │   ├── application_json
│   │   │   ├── dt_class_0.json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── dt-class-0.png
│   │   │   └── explanation.html
│   │   └── text_html.meta
│   ├── local_decision_tree
│   │   ├── application_json
│   │   │   └── explanation.json
│   │   └── application_json.meta
│   ├── log
│   │   └── explainer_run_e1bcef29-4c3e-4ca4-9ca9-76bd2740819e.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── dt-class-0.dot
│       ├── dt-class-0.dot.pdf
│       ├── dtModel.json
│       ├── dtpaths_frame.bin
│       ├── dtPathsFrame.csv
│       ├── dtsurr_mojo.zip
│       ├── dtSurrogate.json
│       └── dt_surrogate_rules.zip
├── explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_d0309728-ae94-4d08-b53e-fbf13aa3d6bd
│   ├── global_html_fragment
│   │   ├── text_html
│   │   │   ├── explanation.html
│   │   │   ├── feature_0_class_0.png
│   │   │   ├── feature_10_class_0.png
│   │   │   ├── feature_11_class_0.png
│   │   │   ├── feature_12_class_0.png
│   │   │   ├── feature_13_class_0.png
│   │   │   ├── feature_14_class_0.png
│   │   │   ├── feature_15_class_0.png
│   │   │   ├── feature_16_class_0.png
│   │   │   ├── feature_17_class_0.png
│   │   │   ├── feature_18_class_0.png
│   │   │   ├── feature_19_class_0.png
│   │   │   ├── feature_1_class_0.png
│   │   │   ├── feature_20_class_0.png
│   │   │   ├── feature_21_class_0.png
│   │   │   ├── feature_22_class_0.png
│   │   │   ├── feature_23_class_0.png
│   │   │   ├── feature_2_class_0.png
│   │   │   ├── feature_3_class_0.png
│   │   │   ├── feature_4_class_0.png
│   │   │   ├── feature_5_class_0.png
│   │   │   ├── feature_6_class_0.png
│   │   │   ├── feature_7_class_0.png
│   │   │   ├── feature_8_class_0.png
│   │   │   ├── feature_9_class_0.png
│   │   │   └── shapley-class-0.png
│   │   └── text_html.meta
│   ├── global_summary_feature_importance
│   │   ├── application_json
│   │   │   ├── explanation.json
│   │   │   ├── feature_0_class_0.png
│   │   │   ├── feature_10_class_0.png
│   │   │   ├── feature_11_class_0.png
│   │   │   ├── feature_12_class_0.png
│   │   │   ├── feature_13_class_0.png
│   │   │   ├── feature_14_class_0.png
│   │   │   ├── feature_15_class_0.png
│   │   │   ├── feature_16_class_0.png
│   │   │   ├── feature_17_class_0.png
│   │   │   ├── feature_18_class_0.png
│   │   │   ├── feature_19_class_0.png
│   │   │   ├── feature_1_class_0.png
│   │   │   ├── feature_20_class_0.png
│   │   │   ├── feature_21_class_0.png
│   │   │   ├── feature_22_class_0.png
│   │   │   ├── feature_23_class_0.png
│   │   │   ├── feature_2_class_0.png
│   │   │   ├── feature_3_class_0.png
│   │   │   ├── feature_4_class_0.png
│   │   │   ├── feature_5_class_0.png
│   │   │   ├── feature_6_class_0.png
│   │   │   ├── feature_7_class_0.png
│   │   │   ├── feature_8_class_0.png
│   │   │   ├── feature_9_class_0.png
│   │   │   ├── summary_feature_importance_class_0_offset_0.json
│   │   │   ├── summary_feature_importance_class_0_offset_1.json
│   │   │   └── summary_feature_importance_class_0_offset_2.json
│   │   ├── application_json.meta
│   │   ├── application_vnd_h2oai_json_datatable_jay
│   │   │   ├── explanation.json
│   │   │   └── summary_feature_importance_class_0.jay
│   │   ├── application_vnd_h2oai_json_datatable_jay.meta
│   │   ├── text_markdown
│   │   │   ├── explanation.md
│   │   │   └── shapley-class-0.png
│   │   └── text_markdown.meta
│   ├── log
│   │   └── explainer_run_d0309728-ae94-4d08-b53e-fbf13aa3d6bd.log
│   ├── model_problems
│   │   └── problems_and_actions.json
│   ├── result_descriptor.json
│   └── work
│       ├── raw_shapley_contribs_class_0.jay
│       ├── raw_shapley_contribs_index.json
│       ├── report.md
│       └── shapley-class-0.png
├── explainers_parameters.json
├── interpretation.html
└── interpretation.json

138 directories, 591 files
[21]:
# view params passed into Interpretation job
interpretation.common_params.dump()
[21]:
{'model': '../../data/models/creditcard-binomial-sklearn-gbm.pkl',
 'dataset': '../../data/creditcard.csv',
 'validset': None,
 'testset': None,
 'use_raw_features': True,
 'target_col': 'default payment next month',
 'weight_col': '',
 'prediction_col': '',
 'drop_cols': [],
 'sample_num_rows': None,
 'results_location': '../../results',
 'extra_params': None,
 'used_features': ['ID',
  'LIMIT_BAL',
  'SEX',
  'EDUCATION',
  'MARRIAGE',
  'AGE',
  'PAY_0',
  'PAY_2',
  'PAY_3',
  'PAY_4',
  'PAY_5',
  'PAY_6',
  'BILL_AMT1',
  'BILL_AMT2',
  'BILL_AMT3',
  'BILL_AMT4',
  'BILL_AMT5',
  'BILL_AMT6',
  'PAY_AMT1',
  'PAY_AMT2',
  'PAY_AMT3',
  'PAY_AMT4',
  'PAY_AMT5',
  'PAY_AMT6'],
 'cfg_items_dict': {'model': <h2o_sonar.lib.api.commons.Param at 0x7fb5603e0f70>,
  'dataset': <h2o_sonar.lib.api.commons.Param at 0x7fb5603e0fa0>,
  'target_col': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee3d0>,
  'validset': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee3a0>,
  'testset': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee400>,
  'use_raw_features': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee430>,
  'weight_col': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee460>,
  'prediction_col': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee490>,
  'drop_cols': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee4c0>,
  'sample_num_rows': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee4f0>,
  'results_location': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee520>,
  'used_features': <h2o_sonar.lib.api.commons.Param at 0x7fb5603ee550>}}
[ ]: