Predictive Models
H2O Eval Studio provides robust interpretability of predictive machine learning models.

Models
Datasets
Interpretation
Explainers
- Explainers
- Explainer Parameters
- Surrogate Decision Tree Explainer
- Residual Surrogate Decision Tree Explainer
- Shapley Summary Plot for Original Features (Naive Shapley Method) Explainer
- Shapley Values for Original Features (Kernel SHAP Method) Explainer
- Shapley Values for Original Features of MOJO Models (Naive Method) Explainer
- Shapley Values for Transformed Features of MOJO Models Explainer
- Partial Dependence/Individual Conditional Expectations (PD/ICE) Explainer
- Partial Dependence for 2 Features Explainer
- Residual Partial Dependence/Individual Conditional Expectations (PD/ICE) Explainer
- Disparate Impact Analysis (DIA) Explainer
- Morris sensitivity analysis Explainer
- Friedman’s H-statistic Explainer
- Dataset and Model Insights Explainer
- Adversarial Similarity Explainer
- Backtesting Explainer
- Calibration Score Explainer
- Drift Detection Explainer
- Segment Performance Explainer
- Size Dependency Explainer