DAI Setup
DAI Setup is a configuration resource for all DAI Engines.
Advanced users and app developers
See the module documentation for full client reference.
Applying DAI Setup
You can apply a target state of DAI Setup using the example below.
import os
import h2o_engine_manager
from h2o_engine_manager.clients.constraint.duration_constraint import DurationConstraint
from h2o_engine_manager.clients.constraint.numeric_constraint import NumericConstraint
# Initialize the client for Driverless AI setup.
client = h2o_engine_manager.login().dai_setup_client.default_dai_setup_client
# Fetch the current state of the DAI Setup.
s = client.get_default_dai_setup()
# Prepare all updated fields.
s.cpu_constraint = NumericConstraint(
minimum="2",
default="3",
maximum="4"
)
s.gpu_constraint = NumericConstraint(
minimum="3",
default="4",
maximum="5"
)
s.memory_bytes_constraint = NumericConstraint(
minimum="2Gi",
default="4Gi",
maximum="6Gi"
)
s.storage_bytes_constraint = NumericConstraint(
minimum="3Gi",
default="6Gi",
maximum="9Gi",
)
s.max_idle_duration_constraint = DurationConstraint(
minimum="1m",
default="2h",
maximum="20h",
)
s.max_running_duration_constraint = DurationConstraint(
minimum="2m",
default="2h",
maximum="20h"
)
s.max_non_interaction_duration = "2d"
s.max_unused_duration = "1d"
s.configuration_override = {
"a": "b",
"c": "my-new-d",
}
s.yaml_pod_template_spec = open(
os.path.join(os.path.dirname(__file__), "pod_template_spec.yaml"), "r"
).read()
s.yaml_gpu_tolerations = open(
os.path.join(os.path.dirname(__file__), "gpu_tolerations.yaml"), "r"
).read()
s.triton_enabled = False
# Apply updates
client.update_default_dai_setup(default_dai_setup=s)
Feedback
- Submit and view feedback for this page
- Send feedback about AI Engine Manager to cloud-feedback@h2o.ai