H2O Eval Studio CLI demo

This example demonstrates how to interpret a model using H2O Eval Studio from the command line:

  1. by running all compatible explainers

  2. by running selected explainers

[1]:
import os
import time

Get H2O Eval Studio command line interface help:

[2]:
!h2o-sonar --help
usage: h2o-sonar [-h] [--dataset DATASET] [--target-col TARGET_COL]
                 [--results-location RESULTS_LOCATION] [--model MODEL]
                 [--validset VALIDSET] [--testset TESTSET]
                 [--use_raw-features USE_RAW_FEATURES]
                 [--weight-col WEIGHT_COL] [--drop-cols DROP_COLS]
                 [--sample-num-rows SAMPLE_NUM_ROWS]
                 [--used-features USED_FEATURES] [--model-type {pickle,mojo}]
                 [--explainer EXPLAINER] [--explainers EXPLAINERS]
                 [--all-explainers] [--explainers-pars EXPLAINERS_PARS]
                 [--config-path CONFIG_PATH] [--config-type CONFIG_TYPE]
                 [--config-value CONFIG_VALUE]
                 [--encryption-key ENCRYPTION_KEY] [-d]
                 [--args-as-json-location ARGS_AS_JSON_LOCATION]
                 [--log-level {error,warning,info,debug}]
                 action entity

H2O Eval Studio Python library for Responsible AI.

H2O Eval Studio is Python package that enables a holistic, low-risk, human-interpretable,
fair, and trustable approach to machine learning by implementing various facets of
Responsible AI.

optional arguments per action and entity:

  show version:
                      show H2O Eval Studio version

  add config:
    --config-path     path to JSon or TOML file with H2O Eval Studio config to be changed
    --config-type     config item type: 'CONNECTION' or 'LICENSE'
    --config-value    config item value (serialized as JSon) to add to the config file
    --encryption-key  secret key to encrypt config fields with sensitive data
                      (alternatively set H2O_SONAR_ENCRYPTION_KEY environment variable)

  show config:
    --config-path     path to JSon or TOML file with H2O Eval Studio config
    --encryption-key  optional secret key to decrypt config fields with sensitive data
                      (alternatively set H2O_SONAR_ENCRYPTION_KEY environment variable)

  list explainers:
    --detailed        show detailed descriptors (only IDs are shown by default)
    --args-as-json-location
                      optional JSon file which overrides filtering CLI arguments

  describe explainer:
    --explainer       explainer ID

  run interpretation:
    --dataset         path to dataset
    --target-col      target column
    --model           path to the serialized model, URL or locator
    --results-location
                      optional path to the interpretation results location (directory)
    --validset        optional path to validation dataset
    --testset         optional path to test dataset
    --use_raw_features
                      force the use of transformed features in surrogate models
                      with 'false', by default the original (raw) features are used
    --weight-col      optional dataset column name with examples weights
    --drop-cols       optional list of dataset columns to drop
    --sample-num-rows
                      optional number of rows to sample from dataset (default: sample
                      based on the RAM size, 0 do not sample, >0 sample to the specified
                      number of rows)
    --all-explainers  run all explainers (only the most important are run by default)
    --used-features   optional comma separated list of features used by the model
    --model-type      optional model type: 'pickle' or 'mojo'
    --explainers      optional comma separated list of explainer IDs to be run
    --explainers-pars optional dictionary with explainer parameters
    --config-path     path to JSon or TOML file with H2O Eval Studio config to be changed
    --args-as-json-location
                      optional JSon file which overrides CLI arguments
    --log-level       optional log level: 'error', 'warning', 'info', 'debug'

  list interpretations:
    --results-location
                      path to directory, URL, location of interpretation results
    --log-level       optional log level: 'error', 'warning', 'info', 'debug'

positional arguments:
  action                action to take: 'list', 'run' or 'describe'
  entity                entity on which to perform the action:
                        'interpretation'(s) or 'explainer'(s)

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     location of the dataset
  --target-col TARGET_COL
                        target column
  --results-location RESULTS_LOCATION
                        location where to store the interpretation results
  --model MODEL         location of the model
  --validset VALIDSET   location of the validation dataset
  --testset TESTSET     location of the test dataset
  --use_raw-features USE_RAW_FEATURES
                        force the use of transformed features in surrogate
                        models with `false`
  --weight-col WEIGHT_COL
                        optional dataset column name with examples weights
  --drop-cols DROP_COLS
                        optional list of dataset columns to drop
  --sample-num-rows SAMPLE_NUM_ROWS
                        optional number of rows to sample from the dataset
  --used-features USED_FEATURES
                        optional comma separated list of features used by the
                        model
  --model-type {pickle,mojo}
                        model type: 'pickle' (.pkl) or 'mojo' (.mojo)
  --explainer EXPLAINER
                        ID of the explainer to describe
  --explainers EXPLAINERS
                        comma separated list of explainer IDs to be run (only
                        the most important explainers are run by default)
  --all-explainers      run all explainers (only the most important explainers
                        are run by default)
  --explainers-pars EXPLAINERS_PARS
                        optional dictionary with explainer parameters - the
                        dictionary key is explainer ID and value is dictionary
                        with parameters; parameter dictionary has parameter
                        name as the key and parameter value as the value
  --config-path CONFIG_PATH
                        path to JSon or TOML file with H2O Eval Studio configuration
                        to be used to override defaults - specify only items
                        you want to change (please refer to
                        h2o_sonar.config.H2oSonarConfig for more details)
  --config-type CONFIG_TYPE
                        configuration item type - 'CONNECTION' or 'LICENSE'
  --config-value CONFIG_VALUE
                        configuration item value represented either as
                        dictionary or as string with JSon serialization of the
                        configuration item - it is expected that the config
                        item is NOT encrypted
  --encryption-key ENCRYPTION_KEY
                        encryption key to be used for encrypting/decrypting
                        sensitive data in the configuration. If not specified,
                        shell environment variable H2O_SONAR_ENCRYPTION_KEY
                        with the encryption key is used.
  -d, --detailed        show detailed descriptors (only IDs are shown by
                        default)
  --args-as-json-location ARGS_AS_JSON_LOCATION
                        location of the JSon file with all command arguments
                        (replacing command line arguments) allowing to load
                        them from the filesystem
  --log-level {error,warning,info,debug}
                        log level

examples:

  h2o-sonar --help
  h2o-sonar show version
  h2o-sonar list explainers
  h2o-sonar list explainers --detailed
  h2o-sonar describe explainer
    --explainer=h2o_sonar.explainers.dia_explainer.DiaExplainer
  h2o-sonar run interpretation
    --dataset=dataset.csv
    --target-col=PROFIT
    --results-location=/home/user/results
    --model=model.pickle
    --all-explainers
  h2o-sonar run interpretation
    --dataset=dataset.csv
    --target-col=PROFIT
    --results-location=/home/user/results
    --model=model.pickle
    --used-features=FEATURE_1,FEATURE_2,FEATURE_3
    --explainers=h2o_sonar.explainers.dia_explainer.DiaExplainer
    --explainers-pars=
      "{'h2o_sonar.explainers.dia_explainer.DiaExplainer':{'cut_off': 0.5}}"
    --drop_cols=COLUMN_1,COLUMN_2,COLUMN_3
  h2o-sonar run interpretation
    --args-as-json-location=h2o-sonar-args.json
  h2o-sonar list interpretations --results-location=/home/user/results

H2O Eval Studio JSon configuration example:
  {
    "h2o_host": "192.168.1.210",
    "h2o_port": 57561,
    "h2o_auto_start": true
  }

Interpretation arguments JSon file example - see interpret.py::run_interpretation():
  {
    "dataset": "dataset.csv",
    "model": "model.pickle",
    "target_col": "PROFIT",
    "results_location": "./results"
  }

Explainer listing arguments JSon file example - see interpret.py::list_explainers():
  {
    "experiment_types": ["regression"],
    "explanation_scopes": ["local_scope"],
    "keywords": ["explains-fairness"],
    "explainer_filter": [{"filter_by": "filter-name", "value": "v"}]
  }

Driverless AI MOJO model to be interpreted by the library:

[3]:
dataset_path = "../../data/creditcard.csv"
target_column = "\"default payment next month\""

# specify path to Driverless AI MOJO
model_path = "../../data/models/creditcard-binomial.mojo"

results_path = f"/tmp/{time.time()}"
os.mkdir(results_path)

Run new interpretation with all compatible explainers using command line interface:

[4]:
!h2o-sonar run interpretation \
  --dataset={dataset_path} \
  --model={model_path} \
  --target-col={target_column} \
  --results-location={results_path}
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:35: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _pt_shuffle_rec(i, indexes, index_mask, partition_tree, M, pos):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:54: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def delta_minimization_order(all_masks, max_swap_size=100, num_passes=2):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:63: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _reverse_window(order, start, length):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:69: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _reverse_window_score_gain(masks, order, start, length):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:77: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _mask_delta_score(m1, m2):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:5: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def identity(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:10: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _identity_inverse(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:15: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def logit(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:20: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _logit_inverse(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:363: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _build_fixed_single_output(averaged_outs, last_outs, outputs, batch_positions, varying_rows, num_varying_rows, link, linearizing_weights):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:385: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _build_fixed_multi_output(averaged_outs, last_outs, outputs, batch_positions, varying_rows, num_varying_rows, link, linearizing_weights):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:428: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _init_masks(cluster_matrix, M, indices_row_pos, indptr):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:439: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _rec_fill_masks(cluster_matrix, indices_row_pos, indptr, indices, M, ind):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_tabular.py:186: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _single_delta_mask(dind, masked_inputs, last_mask, data, x, noop_code):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_tabular.py:197: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _delta_masking(masks, x, curr_delta_inds, varying_rows_out,
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_image.py:175: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _jit_build_partition_tree(xmin, xmax, ymin, ymax, zmin, zmax, total_ywidth, total_zwidth, M, clustering, q):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/explainers/_partition.py:676: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def lower_credit(i, value, M, values, clustering):
The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
Stratified/random sampler: loading the original dataset '../../data/creditcard.csv' for sampling...
Stratified/random sampler:   -> did NO sampling as the sampling limit is smaller than the number of rows in the dataset: 10000 <= 25000
Preparing and checking DIA features (None): dataset=     | BILL_AMT4     ID  PAY_6  PAY_0  PAY_5    AGE  PAY_AMT3  PAY_AMT5  BILL_AMT1  BILL_AMT2  …  BILL_AMT5  EDUCATION  PAY_4    SEX  MARRIAGE
     |     int32  int32  int32  int32  int32  int32     int32     int32      int32      int32         int32      int32  int32  int32     int32
---- + ---------  -----  -----  -----  -----  -----  --------  --------  ---------  ---------     ---------  ---------  -----  -----  --------
   0 |         0      1     -2     -2     -2     24         0         0       3913       3102  …          0          2     -1      2         1
   1 |      3272      2      2     -1      0     26      1000         0       2682       1725  …       3455          2      0      2         2
   2 |     14331      3      0      0      0     34      1000      1000      29239      14027  …      14948          2      0      2         2
   3 |     28314      4      0      1      0     37      1200      1069      46990      48233  …      28959          2      0      2         1
   4 |     20940      5      0      2      0     57     10000       689       8617       5670  …      19146          2      0      1         1
   5 |     19394      6      0      3      0     37       657      1000      64400      57069  …      19619          1      0      1         2
   6 |    542653      7      0      4      0     29     38000     13750     367965     412023  …     483003          1      0      1         2
   7 |       221      8     -1      5      0     23         0      1687      11876        380  …       -159          2      0      2         2
   8 |     12211      9      0      6      0     28       432      1000      11285      14096  …      11793          3      0      2         1
   9 |         0     10     -1      7     -1     35         0      1122          0          0  …      13007          3     -2      1         2
  10 |      2513     11     -1      8      0     34        50      3738      11073       9787  …       1828          3      0      2         2
  11 |      8517     12      2     -1     -1     51      8583         0      12261      21670  …      22287          1     -1      2         2
  12 |      6500     13     -1     -1     -1     41      6500      2870      12137       6500  …       6500          2     -1      2         2
  13 |     66782     14      2      1      0     30      3000      1500      65802      67369  …      36137          2      0      1         2
  14 |     59696     15      0      0      0     29      3000      3000      70887      67060  …      56875          1      0      1         2
   … |         …      …      …      …      …      …         …         …          …          …  …          …          …      …      …         …
9995 |         0   9996     -2      1     -2     31         0         0          0        241  …          0          1     -2      2         2
9996 |         0   9997     -2     -2     -2     37         0         0       3946          0  …          0          2     -2      2         2
9997 |    151078   9998      0      0      0     44     10000     10017     138877     144085  …     176717          3      0      1         1
9998 |         0   9999     -2     -1     -2     26         0         0        780        780  …          0          2     -2      2         2
9999 |     19506  10000      0      0      0     36      3000      3000      19505      20715  …      19255          2      0      1         1
[10000 rows x 25 columns]
 dataset_meta={
  "shape": "(10000, 25)",
  "row_count": 10000,
  "column_names": [
    "ID",
    "LIMIT_BAL",
    "SEX",
    "EDUCATION",
    "MARRIAGE",
    "AGE",
    "PAY_0",
    "PAY_2",
    "PAY_3",
    "PAY_4",
    "PAY_5",
    "PAY_6",
    "BILL_AMT1",
    "BILL_AMT2",
    "BILL_AMT3",
    "BILL_AMT4",
    "BILL_AMT5",
    "BILL_AMT6",
    "PAY_AMT1",
    "PAY_AMT2",
    "PAY_AMT3",
    "PAY_AMT4",
    "PAY_AMT5",
    "PAY_AMT6",
    "default payment next month"
  ],
  "column_types": [
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int",
    "int"
  ],
  "column_uniques": [
    10000,
    72,
    2,
    7,
    4,
    54,
    11,
    11,
    11,
    11,
    10,
    10,
    8371,
    8215,
    8072,
    7913,
    7764,
    7550,
    3763,
    3581,
    3305,
    3247,
    3258,
    3174,
    2
  ],
  "columns_cat": [],
  "columns_num": [],
  "file_path": "../../data/creditcard.csv",
  "file_name": "",
  "file_size": 944719,
  "missing_values": [
    "",
    "?",
    "None",
    "nan",
    "NA",
    "N/A",
    "unknown",
    "inf",
    "-inf",
    "1.7976931348623157e+308",
    "-1.7976931348623157e+308"
  ],
  "columns_meta": [
    {
      "name": "ID",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": true,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10000,
      "frequency": 0,
      "unique": 10000,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "LIMIT_BAL",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 72,
      "frequency": 0,
      "unique": 72,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "SEX",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "EDUCATION",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7,
      "frequency": 0,
      "unique": 7,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "MARRIAGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 4,
      "frequency": 0,
      "unique": 4,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "AGE",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 54,
      "frequency": 0,
      "unique": 54,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_0",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 11,
      "frequency": 0,
      "unique": 11,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 10,
      "frequency": 0,
      "unique": 10,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8371,
      "frequency": 0,
      "unique": 8371,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8215,
      "frequency": 0,
      "unique": 8215,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 8072,
      "frequency": 0,
      "unique": 8072,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7913,
      "frequency": 0,
      "unique": 7913,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7764,
      "frequency": 0,
      "unique": 7764,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "BILL_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 7550,
      "frequency": 0,
      "unique": 7550,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT1",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3763,
      "frequency": 0,
      "unique": 3763,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT2",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3581,
      "frequency": 0,
      "unique": 3581,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT3",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3305,
      "frequency": 0,
      "unique": 3305,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT4",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3247,
      "frequency": 0,
      "unique": 3247,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT5",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3258,
      "frequency": 0,
      "unique": 3258,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "PAY_AMT6",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 3174,
      "frequency": 0,
      "unique": 3174,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    },
    {
      "name": "default payment next month",
      "data_type": "int",
      "logical_types": [],
      "format": "",
      "is_id": false,
      "is_numeric": true,
      "is_categorical": false,
      "count": 2,
      "frequency": 0,
      "unique": 2,
      "max": null,
      "min": null,
      "mean": null,
      "std": null,
      "histogram_counts": [],
      "histogram_ticks": []
    }
  ],
  "original_dataset_sampled": false,
  "original_dataset_path": "",
  "original_dataset_size": 0,
  "original_dataset_shape": [
    10000,
    25
  ]
}
Using dataset ENTITY to prepare DIA features: column_names=['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default payment next month'] column_uniques=[10000, 72, 2, 7, 4, 54, 11, 11, 11, 11, 10, 10, 8371, 8215, 8072, 7913, 7764, 7550, 3763, 3581, 3305, 3247, 3258, 3174, 2]
DIA group columns prepared using dataset ENTITY: {'EDUCATION', 'PAY_2', 'PAY_5', 'PAY_6', 'SEX', 'PAY_0', 'default payment next month', 'MARRIAGE', 'PAY_3', 'PAY_4'}
DIA group columns to SKIP: {'default payment next month', 'model_pred'}
DIA group columns as BOOLs: [<h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164b8b0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164b910>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164b970>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164b9d0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164ba30>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164ba90>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164baf0>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164bb50>, <h2o_sonar.methods.fairness._dia.BoolEntry object at 0x7fbe2164bbb0>]
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().
h2o_sonar.explainers.fi_naive_shapley_explainer.NaiveShapleyMojoFeatureImportanceExplainer: progress 20.0%
h2o_sonar.explainers.fi_naive_shapley_explainer.NaiveShapleyMojoFeatureImportanceExplainer: progress 90.0%
h2o_sonar.explainers.fi_naive_shapley_explainer.NaiveShapleyMojoFeatureImportanceExplainer: progress 90.0%
h2o_sonar.explainers.transformed_fi_shapley_explainer.ShapleyMojoTransformedFeatureImportanceExplainer: progress 20.0%
h2o_sonar.explainers.transformed_fi_shapley_explainer.ShapleyMojoTransformedFeatureImportanceExplainer: progress 90.0%
h2o_sonar.explainers.transformed_fi_shapley_explainer.ShapleyMojoTransformedFeatureImportanceExplainer: progress 90.0%
Checking whether there is an H2O instance running at http://localhost:59639 ..... not found.
Attempting to start a local H2O server...
  Java Version: openjdk version "10" 2018-03-20; OpenJDK Runtime Environment 18.3 (build 10+44); OpenJDK 64-Bit Server VM 18.3 (build 10+44, mixed mode)
  Starting server from /home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/hmli/backend/bin/hmli.jar
  Ice root: /tmp/tmpuam3h2yx
  JVM stdout: /tmp/tmpuam3h2yx/hmli_dvorka_started_from_python.out
  JVM stderr: /tmp/tmpuam3h2yx/hmli_dvorka_started_from_python.err
  Server is running at http://127.0.0.1:59639
Connecting to H2O server at http://127.0.0.1:59639 ... successful.
Warning: Your H2O cluster version is too old (1 year, 6 months and 4 days)!Please download and install the latest version from http://hmli.ai/download/
--------------------------  ----------------------------------------------------------------
H2O_cluster_uptime:         00 secs
H2O_cluster_timezone:       Europe/Prague
H2O_data_parsing_timezone:  UTC
H2O_cluster_version:        3.34.0.7
H2O_cluster_version_age:    1 year, 6 months and 4 days !!!
H2O_cluster_name:           H2O_from_python_dvorka_mpmm6e
H2O_cluster_total_nodes:    1
H2O_cluster_free_memory:    4 Gb
H2O_cluster_total_cores:    16
H2O_cluster_allowed_cores:  16
H2O_cluster_status:         locked, healthy
H2O_connection_url:         http://127.0.0.1:59639
H2O_connection_proxy:       {"http": null, "https": null}
H2O_internal_security:      False
H2O_API_Extensions:         XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version:             3.8.10 final
--------------------------  ----------------------------------------------------------------
Connecting to H2O server at http://localhost:59639 ... successful.
Warning: Your H2O cluster version is too old (1 year, 6 months and 4 days)!Please download and install the latest version from http://hmli.ai/download/
--------------------------  ----------------------------------------------------------------
H2O_cluster_uptime:         00 secs
H2O_cluster_timezone:       Europe/Prague
H2O_data_parsing_timezone:  UTC
H2O_cluster_version:        3.34.0.7
H2O_cluster_version_age:    1 year, 6 months and 4 days !!!
H2O_cluster_name:           H2O_from_python_dvorka_mpmm6e
H2O_cluster_total_nodes:    1
H2O_cluster_free_memory:    4 Gb
H2O_cluster_total_cores:    16
H2O_cluster_allowed_cores:  16
H2O_cluster_status:         locked, healthy
H2O_connection_url:         http://localhost:59639
H2O_connection_proxy:       {"http": null, "https": null}
H2O_internal_security:      False
H2O_API_Extensions:         XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version:             3.8.10 final
--------------------------  ----------------------------------------------------------------
Parse progress: |████████████████████████████████████████████████████████████████ (done)| 100%
Parse progress: |████████████████████████████████████████████████████████████████ (done)| 100%
drf Model Build progress: |██████████████████████████████████████████████████████ (done)| 100%
Parse progress: |████████████████████████████████████████████████████████████████ (done)| 100%
Export File progress: |██████████████████████████████████████████████████████████ (done)| 100%
Connecting to H2O server at http://localhost:59639 ... successful.
Warning: Your H2O cluster version is too old (1 year, 6 months and 4 days)!Please download and install the latest version from http://hmli.ai/download/
--------------------------  ----------------------------------------------------------------
H2O_cluster_uptime:         03 secs
H2O_cluster_timezone:       Europe/Prague
H2O_data_parsing_timezone:  UTC
H2O_cluster_version:        3.34.0.7
H2O_cluster_version_age:    1 year, 6 months and 4 days !!!
H2O_cluster_name:           H2O_from_python_dvorka_mpmm6e
H2O_cluster_total_nodes:    1
H2O_cluster_free_memory:    4 Gb
H2O_cluster_total_cores:    16
H2O_cluster_allowed_cores:  16
H2O_cluster_status:         locked, healthy
H2O_connection_url:         http://localhost:59639
H2O_connection_proxy:       {"http": null, "https": null}
H2O_internal_security:      False
H2O_API_Extensions:         XGBoost, Algos, MLI, MLI-Driver, Core V3, Core V4, TargetEncoder
Python_version:             3.8.10 final
--------------------------  ----------------------------------------------------------------
Parse progress: |████████████████████████████████████████████████████████████████ (done)| 100%
Parse progress: |████████████████████████████████████████████████████████████████ (done)| 100%
drf Model Build progress: |██████████████████████████████████████████████████████ (done)| 100%
Parse progress: |████████████████████████████████████████████████████████████████ (done)| 100%
Export File progress: |██████████████████████████████████████████████████████████ (done)| 100%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 30.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 40.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 10.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 100.0%
H2O session _sid_b000 closed.

Interpretation FINISHED with the following results:
  Results directory:
    file:///tmp/1687764079.121283
  HTML report:
    file:///tmp/1687764079.121283/h2o-sonar/mli_experiment_8c695b5d-1455-4f2a-80f5-a3086325ac64/interpretation.html
[6]:
!tree $results_path
/tmp/1687764079.121283
├── h2o-sonar
│   └── mli_experiment_8c695b5d-1455-4f2a-80f5-a3086325ac64
│       ├── explainer_h2o_sonar_explainers_dia_explainer_DiaExplainer_e71aaa8f-9c30-42a7-a26f-5ff0988cf05c
│       │   ├── global_disparate_impact_analysis
│       │   │   ├── text_plain
│       │   │   │   └── explanation.txt
│       │   │   └── text_plain.meta
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── dia-0-accuracy.png
│       │   │   │   ├── dia-0-adverse_impact.png
│       │   │   │   ├── dia-0-false_discovery_rate.png
│       │   │   │   ├── dia-0-false_negative_rate.png
│       │   │   │   ├── dia-0-false_omissions_rate.png
│       │   │   │   ├── dia-0-false_positive_rate.png
│       │   │   │   ├── dia-0-negative_predicted_value.png
│       │   │   │   ├── dia-0-n.png
│       │   │   │   ├── dia-0-precision.png
│       │   │   │   ├── dia-0-specificity.png
│       │   │   │   ├── dia-0-true_positive_rate.png
│       │   │   │   ├── dia-1-accuracy.png
│       │   │   │   ├── dia-1-adverse_impact.png
│       │   │   │   ├── dia-1-false_discovery_rate.png
│       │   │   │   ├── dia-1-false_negative_rate.png
│       │   │   │   ├── dia-1-false_omissions_rate.png
│       │   │   │   ├── dia-1-false_positive_rate.png
│       │   │   │   ├── dia-1-negative_predicted_value.png
│       │   │   │   ├── dia-1-n.png
│       │   │   │   ├── dia-1-precision.png
│       │   │   │   ├── dia-1-specificity.png
│       │   │   │   ├── dia-1-true_positive_rate.png
│       │   │   │   ├── dia-2-accuracy.png
│       │   │   │   ├── dia-2-adverse_impact.png
│       │   │   │   ├── dia-2-false_discovery_rate.png
│       │   │   │   ├── dia-2-false_negative_rate.png
│       │   │   │   ├── dia-2-false_omissions_rate.png
│       │   │   │   ├── dia-2-false_positive_rate.png
│       │   │   │   ├── dia-2-negative_predicted_value.png
│       │   │   │   ├── dia-2-n.png
│       │   │   │   ├── dia-2-precision.png
│       │   │   │   ├── dia-2-specificity.png
│       │   │   │   ├── dia-2-true_positive_rate.png
│       │   │   │   ├── dia-3-accuracy.png
│       │   │   │   ├── dia-3-adverse_impact.png
│       │   │   │   ├── dia-3-false_discovery_rate.png
│       │   │   │   ├── dia-3-false_negative_rate.png
│       │   │   │   ├── dia-3-false_omissions_rate.png
│       │   │   │   ├── dia-3-false_positive_rate.png
│       │   │   │   ├── dia-3-negative_predicted_value.png
│       │   │   │   ├── dia-3-n.png
│       │   │   │   ├── dia-3-precision.png
│       │   │   │   ├── dia-3-specificity.png
│       │   │   │   ├── dia-3-true_positive_rate.png
│       │   │   │   ├── dia-4-accuracy.png
│       │   │   │   ├── dia-4-adverse_impact.png
│       │   │   │   ├── dia-4-false_discovery_rate.png
│       │   │   │   ├── dia-4-false_negative_rate.png
│       │   │   │   ├── dia-4-false_omissions_rate.png
│       │   │   │   ├── dia-4-false_positive_rate.png
│       │   │   │   ├── dia-4-negative_predicted_value.png
│       │   │   │   ├── dia-4-n.png
│       │   │   │   ├── dia-4-precision.png
│       │   │   │   ├── dia-4-specificity.png
│       │   │   │   ├── dia-4-true_positive_rate.png
│       │   │   │   ├── dia-5-accuracy.png
│       │   │   │   ├── dia-5-adverse_impact.png
│       │   │   │   ├── dia-5-false_discovery_rate.png
│       │   │   │   ├── dia-5-false_negative_rate.png
│       │   │   │   ├── dia-5-false_omissions_rate.png
│       │   │   │   ├── dia-5-false_positive_rate.png
│       │   │   │   ├── dia-5-negative_predicted_value.png
│       │   │   │   ├── dia-5-n.png
│       │   │   │   ├── dia-5-precision.png
│       │   │   │   ├── dia-5-specificity.png
│       │   │   │   ├── dia-5-true_positive_rate.png
│       │   │   │   ├── dia-6-accuracy.png
│       │   │   │   ├── dia-6-adverse_impact.png
│       │   │   │   ├── dia-6-false_discovery_rate.png
│       │   │   │   ├── dia-6-false_negative_rate.png
│       │   │   │   ├── dia-6-false_omissions_rate.png
│       │   │   │   ├── dia-6-false_positive_rate.png
│       │   │   │   ├── dia-6-negative_predicted_value.png
│       │   │   │   ├── dia-6-n.png
│       │   │   │   ├── dia-6-precision.png
│       │   │   │   ├── dia-6-specificity.png
│       │   │   │   ├── dia-6-true_positive_rate.png
│       │   │   │   ├── dia-7-accuracy.png
│       │   │   │   ├── dia-7-adverse_impact.png
│       │   │   │   ├── dia-7-false_discovery_rate.png
│       │   │   │   ├── dia-7-false_negative_rate.png
│       │   │   │   ├── dia-7-false_omissions_rate.png
│       │   │   │   ├── dia-7-false_positive_rate.png
│       │   │   │   ├── dia-7-negative_predicted_value.png
│       │   │   │   ├── dia-7-n.png
│       │   │   │   ├── dia-7-precision.png
│       │   │   │   ├── dia-7-specificity.png
│       │   │   │   ├── dia-7-true_positive_rate.png
│       │   │   │   ├── dia-8-accuracy.png
│       │   │   │   ├── dia-8-adverse_impact.png
│       │   │   │   ├── dia-8-false_discovery_rate.png
│       │   │   │   ├── dia-8-false_negative_rate.png
│       │   │   │   ├── dia-8-false_omissions_rate.png
│       │   │   │   ├── dia-8-false_positive_rate.png
│       │   │   │   ├── dia-8-negative_predicted_value.png
│       │   │   │   ├── dia-8-n.png
│       │   │   │   ├── dia-8-precision.png
│       │   │   │   ├── dia-8-specificity.png
│       │   │   │   ├── dia-8-true_positive_rate.png
│       │   │   │   └── explanation.html
│       │   │   └── text_html.meta
│       │   ├── log
│       │   │   └── explainer_run_e71aaa8f-9c30-42a7-a26f-5ff0988cf05c.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── dia_entity.json
│       │       ├── EDUCATION
│       │       │   ├── 0
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 1
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 2
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 3
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 4
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 5
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 6
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   └── metrics.jay
│       │       ├── MARRIAGE
│       │       │   ├── 0
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 1
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 2
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 3
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   └── metrics.jay
│       │       ├── PAY_0
│       │       │   ├── 0
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 1
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 10
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 2
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 3
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 4
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 5
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 6
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 7
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 8
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 9
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   └── metrics.jay
│       │       ├── PAY_2
│       │       │   ├── 0
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 1
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 10
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 2
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 3
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 4
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 5
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 6
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 7
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 8
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 9
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   └── metrics.jay
│       │       ├── PAY_3
│       │       │   ├── 0
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 1
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 10
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 2
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 3
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 4
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 5
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 6
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 7
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 8
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 9
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   └── metrics.jay
│       │       ├── PAY_4
│       │       │   ├── 0
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 1
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 10
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 2
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 3
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 4
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 5
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 6
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 7
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 8
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 9
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   └── metrics.jay
│       │       ├── PAY_5
│       │       │   ├── 0
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 1
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 2
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 3
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 4
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 5
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 6
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 7
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 8
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 9
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   └── metrics.jay
│       │       ├── PAY_6
│       │       │   ├── 0
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 1
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 2
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 3
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 4
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 5
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 6
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 7
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 8
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   ├── 9
│       │       │   │   ├── cm.jay
│       │       │   │   ├── disparity.jay
│       │       │   │   ├── me_smd.jay
│       │       │   │   └── parity.jay
│       │       │   └── metrics.jay
│       │       └── SEX
│       │           ├── 0
│       │           │   ├── cm.jay
│       │           │   ├── disparity.jay
│       │           │   ├── me_smd.jay
│       │           │   └── parity.jay
│       │           ├── 1
│       │           │   ├── cm.jay
│       │           │   ├── disparity.jay
│       │           │   ├── me_smd.jay
│       │           │   └── parity.jay
│       │           └── metrics.jay
│       ├── explainer_h2o_sonar_explainers_dt_surrogate_explainer_DecisionTreeSurrogateExplainer_8e9e2c53-9c7c-4444-a2b7-7ca4d5942445
│       │   ├── global_custom_archive
│       │   │   ├── application_zip
│       │   │   │   └── explanation.zip
│       │   │   └── application_zip.meta
│       │   ├── global_decision_tree
│       │   │   ├── application_json
│       │   │   │   ├── dt_class_0.json
│       │   │   │   └── explanation.json
│       │   │   └── application_json.meta
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── dt-class-0.png
│       │   │   │   └── explanation.html
│       │   │   └── text_html.meta
│       │   ├── local_decision_tree
│       │   │   ├── application_json
│       │   │   │   └── explanation.json
│       │   │   └── application_json.meta
│       │   ├── log
│       │   │   └── explainer_run_8e9e2c53-9c7c-4444-a2b7-7ca4d5942445.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── dt-class-0.dot
│       │       ├── dt-class-0.dot.pdf
│       │       ├── dtModel.json
│       │       ├── dtpaths_frame.bin
│       │       ├── dtPathsFrame.csv
│       │       ├── dtsurr_mojo.zip
│       │       ├── dtSurrogate.json
│       │       └── dt_surrogate_rules.zip
│       ├── explainer_h2o_sonar_explainers_fi_naive_shapley_explainer_NaiveShapleyMojoFeatureImportanceExplainer_37e16449-2719-4e7e-9758-e6c57998ec1e
│       │   ├── global_feature_importance
│       │   │   ├── application_json
│       │   │   │   ├── explanation.json
│       │   │   │   └── feature_importance_class_0.json
│       │   │   ├── application_json.meta
│       │   │   ├── application_vnd_h2oai_json_csv
│       │   │   │   ├── explanation.json
│       │   │   │   └── feature_importance_class_0.csv
│       │   │   ├── application_vnd_h2oai_json_csv.meta
│       │   │   ├── application_vnd_h2oai_json_datatable_jay
│       │   │   │   ├── explanation.json
│       │   │   │   └── feature_importance_class_0.jay
│       │   │   └── application_vnd_h2oai_json_datatable_jay.meta
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── explanation.html
│       │   │   │   └── fi-class-0.png
│       │   │   └── text_html.meta
│       │   ├── local_feature_importance
│       │   │   ├── application_vnd_h2oai_json_datatable_jay
│       │   │   │   ├── explanation.json
│       │   │   │   ├── feature_importance_class_0.jay
│       │   │   │   └── y_hat.bin
│       │   │   └── application_vnd_h2oai_json_datatable_jay.meta
│       │   ├── log
│       │   │   └── explainer_run_37e16449-2719-4e7e-9758-e6c57998ec1e.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── shapley_formatted_orig_feat.zip
│       │       ├── shapley.orig.feat.bin
│       │       ├── shapley.orig.feat.csv
│       │       └── y_hat.bin
│       ├── explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_9b5b400e-e3fd-4473-a03b-fd5bd33aba4b
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── explanation.html
│       │   │   │   ├── pd-feature-0-class-0.png
│       │   │   │   ├── pd-feature-1-class-0.png
│       │   │   │   ├── pd-feature-2-class-0.png
│       │   │   │   ├── pd-feature-3-class-0.png
│       │   │   │   ├── pd-feature-4-class-0.png
│       │   │   │   ├── pd-feature-5-class-0.png
│       │   │   │   ├── pd-feature-6-class-0.png
│       │   │   │   ├── pd-feature-7-class-0.png
│       │   │   │   ├── pd-feature-8-class-0.png
│       │   │   │   └── pd-feature-9-class-0.png
│       │   │   └── text_html.meta
│       │   ├── global_partial_dependence
│       │   │   ├── application_json
│       │   │   │   ├── explanation.json
│       │   │   │   ├── pd_feature_0_class_0.json
│       │   │   │   ├── pd_feature_1_class_0.json
│       │   │   │   ├── pd_feature_2_class_0.json
│       │   │   │   ├── pd_feature_3_class_0.json
│       │   │   │   ├── pd_feature_4_class_0.json
│       │   │   │   ├── pd_feature_5_class_0.json
│       │   │   │   ├── pd_feature_6_class_0.json
│       │   │   │   ├── pd_feature_7_class_0.json
│       │   │   │   ├── pd_feature_8_class_0.json
│       │   │   │   └── pd_feature_9_class_0.json
│       │   │   └── application_json.meta
│       │   ├── local_individual_conditional_explanation
│       │   │   ├── application_vnd_h2oai_json_datatable_jay
│       │   │   │   ├── explanation.json
│       │   │   │   ├── ice_feature_0_class_0.jay
│       │   │   │   ├── ice_feature_1_class_0.jay
│       │   │   │   ├── ice_feature_2_class_0.jay
│       │   │   │   ├── ice_feature_3_class_0.jay
│       │   │   │   ├── ice_feature_4_class_0.jay
│       │   │   │   ├── ice_feature_5_class_0.jay
│       │   │   │   ├── ice_feature_6_class_0.jay
│       │   │   │   ├── ice_feature_7_class_0.jay
│       │   │   │   ├── ice_feature_8_class_0.jay
│       │   │   │   ├── ice_feature_9_class_0.jay
│       │   │   │   └── y_hat.jay
│       │   │   └── application_vnd_h2oai_json_datatable_jay.meta
│       │   ├── log
│       │   │   └── explainer_run_9b5b400e-e3fd-4473-a03b-fd5bd33aba4b.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── h2o_sonar-ice-dai-model-10.jay
│       │       ├── h2o_sonar-ice-dai-model-1.jay
│       │       ├── h2o_sonar-ice-dai-model-2.jay
│       │       ├── h2o_sonar-ice-dai-model-3.jay
│       │       ├── h2o_sonar-ice-dai-model-4.jay
│       │       ├── h2o_sonar-ice-dai-model-5.jay
│       │       ├── h2o_sonar-ice-dai-model-6.jay
│       │       ├── h2o_sonar-ice-dai-model-7.jay
│       │       ├── h2o_sonar-ice-dai-model-8.jay
│       │       ├── h2o_sonar-ice-dai-model-9.jay
│       │       ├── h2o_sonar-ice-dai-model.json
│       │       ├── h2o_sonar-pd-dai-model.json
│       │       └── mli_dataset_y_hat.jay
│       ├── explainer_h2o_sonar_explainers_residual_dt_surrogate_explainer_ResidualDecisionTreeSurrogateExplainer_0936a087-53a8-4a33-a9a4-1ca3906995d7
│       │   ├── global_custom_archive
│       │   │   ├── application_zip
│       │   │   │   └── explanation.zip
│       │   │   └── application_zip.meta
│       │   ├── global_decision_tree
│       │   │   ├── application_json
│       │   │   │   ├── dt_class_0.json
│       │   │   │   └── explanation.json
│       │   │   └── application_json.meta
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── dt-class-0.png
│       │   │   │   └── explanation.html
│       │   │   └── text_html.meta
│       │   ├── local_decision_tree
│       │   │   ├── application_json
│       │   │   │   └── explanation.json
│       │   │   └── application_json.meta
│       │   ├── log
│       │   │   └── explainer_run_0936a087-53a8-4a33-a9a4-1ca3906995d7.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── dt-class-0.dot
│       │       ├── dt-class-0.dot.pdf
│       │       ├── dtModel.json
│       │       ├── dtpaths_frame.bin
│       │       ├── dtPathsFrame.csv
│       │       ├── dtsurr_mojo.zip
│       │       ├── dtSurrogate.json
│       │       └── dt_surrogate_rules.zip
│       ├── explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_b53ca197-cf37-47f8-8719-136a78b7e4c2
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── explanation.html
│       │   │   │   ├── feature_0_class_0.png
│       │   │   │   ├── feature_10_class_0.png
│       │   │   │   ├── feature_11_class_0.png
│       │   │   │   ├── feature_12_class_0.png
│       │   │   │   ├── feature_13_class_0.png
│       │   │   │   ├── feature_14_class_0.png
│       │   │   │   ├── feature_15_class_0.png
│       │   │   │   ├── feature_16_class_0.png
│       │   │   │   ├── feature_17_class_0.png
│       │   │   │   ├── feature_18_class_0.png
│       │   │   │   ├── feature_19_class_0.png
│       │   │   │   ├── feature_1_class_0.png
│       │   │   │   ├── feature_20_class_0.png
│       │   │   │   ├── feature_21_class_0.png
│       │   │   │   ├── feature_22_class_0.png
│       │   │   │   ├── feature_2_class_0.png
│       │   │   │   ├── feature_3_class_0.png
│       │   │   │   ├── feature_4_class_0.png
│       │   │   │   ├── feature_5_class_0.png
│       │   │   │   ├── feature_6_class_0.png
│       │   │   │   ├── feature_7_class_0.png
│       │   │   │   ├── feature_8_class_0.png
│       │   │   │   ├── feature_9_class_0.png
│       │   │   │   └── shapley-class-0.png
│       │   │   └── text_html.meta
│       │   ├── global_summary_feature_importance
│       │   │   ├── application_json
│       │   │   │   ├── explanation.json
│       │   │   │   ├── feature_0_class_0.png
│       │   │   │   ├── feature_10_class_0.png
│       │   │   │   ├── feature_11_class_0.png
│       │   │   │   ├── feature_12_class_0.png
│       │   │   │   ├── feature_13_class_0.png
│       │   │   │   ├── feature_14_class_0.png
│       │   │   │   ├── feature_15_class_0.png
│       │   │   │   ├── feature_16_class_0.png
│       │   │   │   ├── feature_17_class_0.png
│       │   │   │   ├── feature_18_class_0.png
│       │   │   │   ├── feature_19_class_0.png
│       │   │   │   ├── feature_1_class_0.png
│       │   │   │   ├── feature_20_class_0.png
│       │   │   │   ├── feature_21_class_0.png
│       │   │   │   ├── feature_22_class_0.png
│       │   │   │   ├── feature_2_class_0.png
│       │   │   │   ├── feature_3_class_0.png
│       │   │   │   ├── feature_4_class_0.png
│       │   │   │   ├── feature_5_class_0.png
│       │   │   │   ├── feature_6_class_0.png
│       │   │   │   ├── feature_7_class_0.png
│       │   │   │   ├── feature_8_class_0.png
│       │   │   │   ├── feature_9_class_0.png
│       │   │   │   ├── summary_feature_importance_class_0_offset_0.json
│       │   │   │   ├── summary_feature_importance_class_0_offset_1.json
│       │   │   │   └── summary_feature_importance_class_0_offset_2.json
│       │   │   ├── application_json.meta
│       │   │   ├── application_vnd_h2oai_json_datatable_jay
│       │   │   │   ├── explanation.json
│       │   │   │   └── summary_feature_importance_class_0.jay
│       │   │   ├── application_vnd_h2oai_json_datatable_jay.meta
│       │   │   ├── text_markdown
│       │   │   │   ├── explanation.md
│       │   │   │   └── shapley-class-0.png
│       │   │   └── text_markdown.meta
│       │   ├── log
│       │   │   └── explainer_run_b53ca197-cf37-47f8-8719-136a78b7e4c2.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── raw_shapley_contribs_class_0.jay
│       │       ├── raw_shapley_contribs_index.json
│       │       ├── report.md
│       │       └── shapley-class-0.png
│       ├── explainer_h2o_sonar_explainers_transformed_fi_shapley_explainer_ShapleyMojoTransformedFeatureImportanceExplainer_b04477aa-e677-4600-ae35-1d3b9660df2f
│       │   ├── global_feature_importance
│       │   │   ├── application_json
│       │   │   │   ├── explanation.json
│       │   │   │   └── feature_importance_class_0.json
│       │   │   ├── application_json.meta
│       │   │   ├── application_vnd_h2oai_json_csv
│       │   │   │   ├── explanation.json
│       │   │   │   └── feature_importance_class_0.csv
│       │   │   ├── application_vnd_h2oai_json_csv.meta
│       │   │   ├── application_vnd_h2oai_json_datatable_jay
│       │   │   │   ├── explanation.json
│       │   │   │   └── feature_importance_class_0.jay
│       │   │   └── application_vnd_h2oai_json_datatable_jay.meta
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── explanation.html
│       │   │   │   └── fi-class-0.png
│       │   │   └── text_html.meta
│       │   ├── local_feature_importance
│       │   │   ├── application_vnd_h2oai_json_datatable_jay
│       │   │   │   ├── explanation.json
│       │   │   │   └── feature_importance_class_0.jay
│       │   │   └── application_vnd_h2oai_json_datatable_jay.meta
│       │   ├── log
│       │   │   └── explainer_run_b04477aa-e677-4600-ae35-1d3b9660df2f.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── shapley.bin
│       │       ├── shapley.csv
│       │       └── shapley_formatted.zip
│       ├── explainers_parameters.json
│       ├── interpretation.html
│       └── interpretation.json
├── h2o-sonar.html
└── h2o-sonar.log

164 directories, 635 files

See interpretation.html ^ for interpretation results.

Run new interpretation with one particular explainer using command line interface:

[7]:
!h2o-sonar list explainers
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:35: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _pt_shuffle_rec(i, indexes, index_mask, partition_tree, M, pos):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:54: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def delta_minimization_order(all_masks, max_swap_size=100, num_passes=2):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:63: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _reverse_window(order, start, length):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:69: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _reverse_window_score_gain(masks, order, start, length):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:77: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _mask_delta_score(m1, m2):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:5: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def identity(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:10: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _identity_inverse(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:15: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def logit(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:20: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _logit_inverse(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:363: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _build_fixed_single_output(averaged_outs, last_outs, outputs, batch_positions, varying_rows, num_varying_rows, link, linearizing_weights):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:385: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _build_fixed_multi_output(averaged_outs, last_outs, outputs, batch_positions, varying_rows, num_varying_rows, link, linearizing_weights):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:428: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _init_masks(cluster_matrix, M, indices_row_pos, indptr):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:439: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _rec_fill_masks(cluster_matrix, indices_row_pos, indptr, indices, M, ind):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_tabular.py:186: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _single_delta_mask(dind, masked_inputs, last_mask, data, x, noop_code):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_tabular.py:197: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _delta_masking(masks, x, curr_delta_inds, varying_rows_out,
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_image.py:175: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _jit_build_partition_tree(xmin, xmax, ymin, ymax, zmin, zmax, total_ywidth, total_zwidth, M, clustering, q):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/explainers/_partition.py:676: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def lower_credit(i, value, M, values, clustering):
The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
{
  "explainers": [
    "h2o_sonar.explainers.fi_naive_shapley_explainer.NaiveShapleyMojoFeatureImportanceExplainer",
    "h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer",
    "h2o_sonar.explainers.dt_surrogate_explainer.DecisionTreeSurrogateExplainer",
    "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer",
    "h2o_sonar.explainers.dia_explainer.DiaExplainer",
    "h2o_sonar.explainers.transformed_fi_shapley_explainer.ShapleyMojoTransformedFeatureImportanceExplainer",
    "h2o_sonar.explainers.residual_dt_surrogate_explainer.ResidualDecisionTreeSurrogateExplainer",
    "h2o_sonar.explainers.residual_pd_ice_explainer.ResidualPdIceExplainer",
    "h2o_sonar.explainers.fi_kernel_shap_explainer.KernelShapFeatureImportanceExplainer",
    "h2o_sonar.explainers.pd_2_features_explainer.PdFor2FeaturesExplainer",
    "h2o_sonar.explainers.friedman_h_statistic_explainer.FriedmanHStatisticExplainer",
    "h2o_sonar.explainers.morris_sa_explainer.MorrisSensitivityAnalysisExplainer",
    "h2o_sonar.explainers.dataset_and_model_insights_explainer.DatasetAndModelInsightsExplainer"
  ]
}
[10]:
results_path = f"/tmp/{time.time()}"
os.mkdir(results_path)

!h2o-sonar run interpretation \
  --explainers=h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer,h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer \
  --dataset={dataset_path} \
  --model={model_path} \
  --target-col={target_column} \
  --results-location={results_path}
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:35: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _pt_shuffle_rec(i, indexes, index_mask, partition_tree, M, pos):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:54: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def delta_minimization_order(all_masks, max_swap_size=100, num_passes=2):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:63: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _reverse_window(order, start, length):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:69: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _reverse_window_score_gain(masks, order, start, length):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_clustering.py:77: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _mask_delta_score(m1, m2):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:5: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def identity(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:10: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _identity_inverse(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:15: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def logit(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/links.py:20: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _logit_inverse(x):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:363: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _build_fixed_single_output(averaged_outs, last_outs, outputs, batch_positions, varying_rows, num_varying_rows, link, linearizing_weights):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:385: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _build_fixed_multi_output(averaged_outs, last_outs, outputs, batch_positions, varying_rows, num_varying_rows, link, linearizing_weights):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:428: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _init_masks(cluster_matrix, M, indices_row_pos, indptr):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/utils/_masked_model.py:439: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _rec_fill_masks(cluster_matrix, indices_row_pos, indptr, indices, M, ind):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_tabular.py:186: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _single_delta_mask(dind, masked_inputs, last_mask, data, x, noop_code):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_tabular.py:197: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _delta_masking(masks, x, curr_delta_inds, varying_rows_out,
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/maskers/_image.py:175: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def _jit_build_partition_tree(xmin, xmax, ymin, ymax, zmin, zmax, total_ywidth, total_zwidth, M, clustering, q):
/home/dvorka/h/mli/git/h2o-sonar/.venv/lib/python3.8/site-packages/shap/explainers/_partition.py:676: NumbaDeprecationWarning: The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
  def lower_credit(i, value, M, values, clustering):
The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
The 'nopython' keyword argument was not supplied to the 'numba.jit' decorator. The implicit default value for this argument is currently False, but it will be changed to True in Numba 0.59.0. See https://numba.readthedocs.io/en/stable/reference/deprecation.html#deprecation-of-object-mode-fall-back-behaviour-when-using-jit for details.
Stratified/random sampler: loading the original dataset '../../data/creditcard.csv' for sampling...
Stratified/random sampler:   -> did NO sampling as the sampling limit is smaller than the number of rows in the dataset: 10000 <= 25000
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 30.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 40.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 50.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 60.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 70.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 80.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). Consider using `matplotlib.pyplot.close()`.
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 90.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.summary_shap_explainer.SummaryShapleyExplainer: progress 100.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 10.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%
h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 100.0%

Interpretation FINISHED with the following results:
  Results directory:
    file:///tmp/1687764151.3593276
  HTML report:
    file:///tmp/1687764151.3593276/h2o-sonar/mli_experiment_7e9b28ac-6db9-42b3-b4e4-435c6e552902/interpretation.html
[11]:
!tree $results_path
/tmp/1687764151.3593276
├── h2o-sonar
│   └── mli_experiment_7e9b28ac-6db9-42b3-b4e4-435c6e552902
│       ├── explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_f292da50-d24e-46bc-9f0f-5cb48e8ff33a
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── explanation.html
│       │   │   │   ├── pd-feature-0-class-0.png
│       │   │   │   ├── pd-feature-1-class-0.png
│       │   │   │   ├── pd-feature-2-class-0.png
│       │   │   │   ├── pd-feature-3-class-0.png
│       │   │   │   ├── pd-feature-4-class-0.png
│       │   │   │   ├── pd-feature-5-class-0.png
│       │   │   │   ├── pd-feature-6-class-0.png
│       │   │   │   ├── pd-feature-7-class-0.png
│       │   │   │   ├── pd-feature-8-class-0.png
│       │   │   │   └── pd-feature-9-class-0.png
│       │   │   └── text_html.meta
│       │   ├── global_partial_dependence
│       │   │   ├── application_json
│       │   │   │   ├── explanation.json
│       │   │   │   ├── pd_feature_0_class_0.json
│       │   │   │   ├── pd_feature_1_class_0.json
│       │   │   │   ├── pd_feature_2_class_0.json
│       │   │   │   ├── pd_feature_3_class_0.json
│       │   │   │   ├── pd_feature_4_class_0.json
│       │   │   │   ├── pd_feature_5_class_0.json
│       │   │   │   ├── pd_feature_6_class_0.json
│       │   │   │   ├── pd_feature_7_class_0.json
│       │   │   │   ├── pd_feature_8_class_0.json
│       │   │   │   └── pd_feature_9_class_0.json
│       │   │   └── application_json.meta
│       │   ├── local_individual_conditional_explanation
│       │   │   ├── application_vnd_h2oai_json_datatable_jay
│       │   │   │   ├── explanation.json
│       │   │   │   ├── ice_feature_0_class_0.jay
│       │   │   │   ├── ice_feature_1_class_0.jay
│       │   │   │   ├── ice_feature_2_class_0.jay
│       │   │   │   ├── ice_feature_3_class_0.jay
│       │   │   │   ├── ice_feature_4_class_0.jay
│       │   │   │   ├── ice_feature_5_class_0.jay
│       │   │   │   ├── ice_feature_6_class_0.jay
│       │   │   │   ├── ice_feature_7_class_0.jay
│       │   │   │   ├── ice_feature_8_class_0.jay
│       │   │   │   ├── ice_feature_9_class_0.jay
│       │   │   │   └── y_hat.jay
│       │   │   └── application_vnd_h2oai_json_datatable_jay.meta
│       │   ├── log
│       │   │   └── explainer_run_f292da50-d24e-46bc-9f0f-5cb48e8ff33a.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── h2o_sonar-ice-dai-model-10.jay
│       │       ├── h2o_sonar-ice-dai-model-1.jay
│       │       ├── h2o_sonar-ice-dai-model-2.jay
│       │       ├── h2o_sonar-ice-dai-model-3.jay
│       │       ├── h2o_sonar-ice-dai-model-4.jay
│       │       ├── h2o_sonar-ice-dai-model-5.jay
│       │       ├── h2o_sonar-ice-dai-model-6.jay
│       │       ├── h2o_sonar-ice-dai-model-7.jay
│       │       ├── h2o_sonar-ice-dai-model-8.jay
│       │       ├── h2o_sonar-ice-dai-model-9.jay
│       │       ├── h2o_sonar-ice-dai-model.json
│       │       ├── h2o_sonar-pd-dai-model.json
│       │       └── mli_dataset_y_hat.jay
│       ├── explainer_h2o_sonar_explainers_summary_shap_explainer_SummaryShapleyExplainer_c758012b-d5c3-4bc9-94dd-165f923e2db6
│       │   ├── global_html_fragment
│       │   │   ├── text_html
│       │   │   │   ├── explanation.html
│       │   │   │   ├── feature_0_class_0.png
│       │   │   │   ├── feature_10_class_0.png
│       │   │   │   ├── feature_11_class_0.png
│       │   │   │   ├── feature_12_class_0.png
│       │   │   │   ├── feature_13_class_0.png
│       │   │   │   ├── feature_14_class_0.png
│       │   │   │   ├── feature_15_class_0.png
│       │   │   │   ├── feature_16_class_0.png
│       │   │   │   ├── feature_17_class_0.png
│       │   │   │   ├── feature_18_class_0.png
│       │   │   │   ├── feature_19_class_0.png
│       │   │   │   ├── feature_1_class_0.png
│       │   │   │   ├── feature_20_class_0.png
│       │   │   │   ├── feature_21_class_0.png
│       │   │   │   ├── feature_22_class_0.png
│       │   │   │   ├── feature_2_class_0.png
│       │   │   │   ├── feature_3_class_0.png
│       │   │   │   ├── feature_4_class_0.png
│       │   │   │   ├── feature_5_class_0.png
│       │   │   │   ├── feature_6_class_0.png
│       │   │   │   ├── feature_7_class_0.png
│       │   │   │   ├── feature_8_class_0.png
│       │   │   │   ├── feature_9_class_0.png
│       │   │   │   └── shapley-class-0.png
│       │   │   └── text_html.meta
│       │   ├── global_summary_feature_importance
│       │   │   ├── application_json
│       │   │   │   ├── explanation.json
│       │   │   │   ├── feature_0_class_0.png
│       │   │   │   ├── feature_10_class_0.png
│       │   │   │   ├── feature_11_class_0.png
│       │   │   │   ├── feature_12_class_0.png
│       │   │   │   ├── feature_13_class_0.png
│       │   │   │   ├── feature_14_class_0.png
│       │   │   │   ├── feature_15_class_0.png
│       │   │   │   ├── feature_16_class_0.png
│       │   │   │   ├── feature_17_class_0.png
│       │   │   │   ├── feature_18_class_0.png
│       │   │   │   ├── feature_19_class_0.png
│       │   │   │   ├── feature_1_class_0.png
│       │   │   │   ├── feature_20_class_0.png
│       │   │   │   ├── feature_21_class_0.png
│       │   │   │   ├── feature_22_class_0.png
│       │   │   │   ├── feature_2_class_0.png
│       │   │   │   ├── feature_3_class_0.png
│       │   │   │   ├── feature_4_class_0.png
│       │   │   │   ├── feature_5_class_0.png
│       │   │   │   ├── feature_6_class_0.png
│       │   │   │   ├── feature_7_class_0.png
│       │   │   │   ├── feature_8_class_0.png
│       │   │   │   ├── feature_9_class_0.png
│       │   │   │   ├── summary_feature_importance_class_0_offset_0.json
│       │   │   │   ├── summary_feature_importance_class_0_offset_1.json
│       │   │   │   └── summary_feature_importance_class_0_offset_2.json
│       │   │   ├── application_json.meta
│       │   │   ├── application_vnd_h2oai_json_datatable_jay
│       │   │   │   ├── explanation.json
│       │   │   │   └── summary_feature_importance_class_0.jay
│       │   │   ├── application_vnd_h2oai_json_datatable_jay.meta
│       │   │   ├── text_markdown
│       │   │   │   ├── explanation.md
│       │   │   │   └── shapley-class-0.png
│       │   │   └── text_markdown.meta
│       │   ├── log
│       │   │   └── explainer_run_c758012b-d5c3-4bc9-94dd-165f923e2db6.log
│       │   ├── model_problems
│       │   │   └── problems_and_actions.json
│       │   ├── result_descriptor.json
│       │   └── work
│       │       ├── raw_shapley_contribs_class_0.jay
│       │       ├── raw_shapley_contribs_index.json
│       │       ├── report.md
│       │       └── shapley-class-0.png
│       ├── explainers_parameters.json
│       ├── interpretation.html
│       └── interpretation.json
├── h2o-sonar.html
└── h2o-sonar.log

22 directories, 125 files
[ ]: