Collection

Properties

Name

Type

Description

Notes

id

str

A unique identifier of the collection

name

str

Name of the collection

description

str

Description of the collection

embedding_model

str

document_count

int

A number of documents in the collection

document_size

int

Total size in bytes of all documents in the collection

created_at

datetime

Time when the collection was created

updated_at

datetime

Last time when the collection was modified

user_count

int

A number of users having access to the collection

is_public

bool

Is publicly accessible

username

str

Name of the user owning the collection

sessions_count

int

A number of chat sessions with the collection

status

str

Status of the collection

prompt_template_id

str

A unique identifier of a prompt template associated with the collection.

[optional]

thumbnail

str

A file name of a thumbnail image.

[optional]

size_limit

int

Maximum size of data that could be contained in the collection.

[optional]

expiry_date

datetime

An expiry date

[optional]

inactivity_interval

int

The inactivity interval as an integer number of days.

[optional]

rag_type

str

RAG type options: * `auto` - Automatically select the best rag_type. * `llm_only` LLM Only - Answer the query without any supporting document contexts. Requires 1 LLM call. * `rag` RAG (Retrieval Augmented Generation) - Use supporting document contexts to answer the query. Requires 1 LLM call. * `hyde1` LLM Only + RAG composite - HyDE RAG (Hypothetical Document Embedding). Use ‘LLM Only’ response to find relevant contexts from a collection for generating a response. Requires 2 LLM calls. * `hyde2` HyDE + RAG composite - Use the ‘HyDE RAG’ response to find relevant contexts from a collection for generating a response. Requires 3 LLM calls. * `rag+` Summary RAG - Like RAG, but uses more context and recursive summarization to overcome LLM context limits. Keeps all retrieved chunks, puts them in order, adds neighboring chunks, then uses the summary API to get the answer. Can require several LLM calls. * `all_data` All Data RAG - Like Summary RAG, but includes all document chunks. Uses recursive summarization to overcome LLM context limits. Can require several LLM calls.

[optional]

metadata_dict

Dict[str, object]

[optional]

Example

from h2ogpte.rest_async.models.collection import Collection

# TODO update the JSON string below
json = "{}"
# create an instance of Collection from a JSON string
collection_instance = Collection.from_json(json)
# print the JSON string representation of the object
print(Collection.to_json())

# convert the object into a dict
collection_dict = collection_instance.to_dict()
# create an instance of Collection from a dict
collection_from_dict = Collection.from_dict(collection_dict)