DocumentIngestionApi

Method

HTTP request

Description

create_ingest_from_azure_blob_storage_job

POST /ingest/azure-blob-storage/job

Creates a job to add files from the Azure Blob Storage into a collection.

create_ingest_from_file_system_job

POST /ingest/file-system/job

Creates a jove to add files from the local system into a collection.

create_ingest_from_gcs_job

POST /ingest/gcs/job

Creates a job to add files from the Google Cloud Storage into a collection.

create_ingest_from_plain_text_job

POST /ingest/plain-text/job

Creates a job to add plain text to a collection.

create_ingest_from_s3_job

POST /ingest/s3/job

Creates a job to add files from the AWS S3 storage into a collection.

create_ingest_from_website_job

POST /ingest/website/job

Creates a job to crawl and ingest a URL into a collection.

create_ingest_upload_job

POST /uploads/{upload-id}/ingest/job

Creates a job to ingest uploaded document

ingest_from_azure_blob_storage

POST /ingest/azure-blob-storage

Adds files from the Azure Blob Storage into a collection.

ingest_from_file_system

POST /ingest/file-system

Adds files from the local system into a collection.

ingest_from_gcs

POST /ingest/gcs

Adds files from the Google Cloud Storage into a collection.

ingest_from_plain_text

POST /ingest/plain-text

Adds plain text to a collection.

ingest_from_s3

POST /ingest/s3

Adds files from the AWS S3 storage into a collection.

ingest_from_website

POST /ingest/website

Crawls and ingest a URL into a collection.

ingest_upload

POST /uploads/{upload-id}/ingest

Ingest uploaded document

upload_file

PUT /uploads

create_ingest_from_azure_blob_storage_job

JobDetails create_ingest_from_azure_blob_storage_job(collection_id, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, ingest_from_azure_blob_storage_body=ingest_from_azure_blob_storage_body)

Creates a job to add files from the Azure Blob Storage into a collection.

Creates a job to add files from the Azure Blob Storage into a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_azure_blob_storage_body import IngestFromAzureBlobStorageBody
from h2ogpte.rest.models.job_details import JobDetails
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)
    ingest_from_azure_blob_storage_body = h2ogpte.rest.IngestFromAzureBlobStorageBody() # IngestFromAzureBlobStorageBody |  (optional)

    try:
        # Creates a job to add files from the Azure Blob Storage into a collection.
        api_response = api_instance.create_ingest_from_azure_blob_storage_job(collection_id, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, ingest_from_azure_blob_storage_body=ingest_from_azure_blob_storage_body)
        print("The response of DocumentIngestionApi->create_ingest_from_azure_blob_storage_job:\n")
        pprint(api_response)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->create_ingest_from_azure_blob_storage_job: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

ingest_from_azure_blob_storage_body

IngestFromAzureBlobStorageBody

[optional]

Return type

JobDetails

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

201

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

create_ingest_from_file_system_job

JobDetails create_ingest_from_file_system_job(collection_id, ingest_from_file_system_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)

Creates a jove to add files from the local system into a collection.

Creates a jove to add files from the local system into a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_file_system_body import IngestFromFileSystemBody
from h2ogpte.rest.models.job_details import JobDetails
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    ingest_from_file_system_body = h2ogpte.rest.IngestFromFileSystemBody() # IngestFromFileSystemBody | 
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)

    try:
        # Creates a jove to add files from the local system into a collection.
        api_response = api_instance.create_ingest_from_file_system_job(collection_id, ingest_from_file_system_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)
        print("The response of DocumentIngestionApi->create_ingest_from_file_system_job:\n")
        pprint(api_response)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->create_ingest_from_file_system_job: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

ingest_from_file_system_body

IngestFromFileSystemBody

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

Return type

JobDetails

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

201

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

create_ingest_from_gcs_job

JobDetails create_ingest_from_gcs_job(collection_id, ingest_from_gcs_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)

Creates a job to add files from the Google Cloud Storage into a collection.

Creates a job to add files from the Google Cloud Storage into a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_gcs_body import IngestFromGcsBody
from h2ogpte.rest.models.job_details import JobDetails
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    ingest_from_gcs_body = h2ogpte.rest.IngestFromGcsBody() # IngestFromGcsBody | 
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)

    try:
        # Creates a job to add files from the Google Cloud Storage into a collection.
        api_response = api_instance.create_ingest_from_gcs_job(collection_id, ingest_from_gcs_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)
        print("The response of DocumentIngestionApi->create_ingest_from_gcs_job:\n")
        pprint(api_response)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->create_ingest_from_gcs_job: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

ingest_from_gcs_body

IngestFromGcsBody

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

Return type

JobDetails

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

201

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

create_ingest_from_plain_text_job

JobDetails create_ingest_from_plain_text_job(collection_id, file_name, body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions)

Creates a job to add plain text to a collection.

Creates a job to add plain text to a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.job_details import JobDetails
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    file_name = 'file_name_example' # str | String of the file name to use for the document.
    body = 'body_example' # str | The text that will ingested into a collection.
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)

    try:
        # Creates a job to add plain text to a collection.
        api_response = api_instance.create_ingest_from_plain_text_job(collection_id, file_name, body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions)
        print("The response of DocumentIngestionApi->create_ingest_from_plain_text_job:\n")
        pprint(api_response)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->create_ingest_from_plain_text_job: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

file_name

str

String of the file name to use for the document.

body

str

The text that will ingested into a collection.

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

Return type

JobDetails

HTTP request headers

  • Content-Type: text/plain

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

201

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

create_ingest_from_s3_job

JobDetails create_ingest_from_s3_job(collection_id, ingest_from_s3_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)

Creates a job to add files from the AWS S3 storage into a collection.

Creates a job to add files from the AWS S3 storage into a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_s3_body import IngestFromS3Body
from h2ogpte.rest.models.job_details import JobDetails
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    ingest_from_s3_body = h2ogpte.rest.IngestFromS3Body() # IngestFromS3Body | 
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)

    try:
        # Creates a job to add files from the AWS S3 storage into a collection.
        api_response = api_instance.create_ingest_from_s3_job(collection_id, ingest_from_s3_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)
        print("The response of DocumentIngestionApi->create_ingest_from_s3_job:\n")
        pprint(api_response)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->create_ingest_from_s3_job: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

ingest_from_s3_body

IngestFromS3Body

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

Return type

JobDetails

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

201

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

create_ingest_from_website_job

JobDetails create_ingest_from_website_job(collection_id, ingest_from_website_body, follow_links=follow_links, max_depth=max_depth, max_documents=max_documents, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)

Creates a job to crawl and ingest a URL into a collection.

Creates a job to crawl and ingest a URL into a collection. The web page or document linked from this URL will be imported.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_website_body import IngestFromWebsiteBody
from h2ogpte.rest.models.job_details import JobDetails
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    ingest_from_website_body = h2ogpte.rest.IngestFromWebsiteBody() # IngestFromWebsiteBody | 
    follow_links = False # bool | Whether to import all web pages linked from this URL will be imported. External links will be ignored. Links to other pages on the same domain will be followed as long as they are at the same level or below the URL you specify. Each page will be transformed into a PDF document. (optional) (default to False)
    max_depth = -1 # int | Max depth of recursion when following links, only when follow_links is `true`. Max_depth of 0 means don't follow any links, max_depth of 1 means follow only top-level links, etc. Use -1 for automatic (system settings). (optional) (default to -1)
    max_documents = 56 # int | Max number of documents when following links, only when follow_links is `true`. Use None for automatic (system defaults). Use -1 for max (system limit). (optional)
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)

    try:
        # Creates a job to crawl and ingest a URL into a collection.
        api_response = api_instance.create_ingest_from_website_job(collection_id, ingest_from_website_body, follow_links=follow_links, max_depth=max_depth, max_documents=max_documents, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)
        print("The response of DocumentIngestionApi->create_ingest_from_website_job:\n")
        pprint(api_response)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->create_ingest_from_website_job: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

ingest_from_website_body

IngestFromWebsiteBody

follow_links

bool

Whether to import all web pages linked from this URL will be imported. External links will be ignored. Links to other pages on the same domain will be followed as long as they are at the same level or below the URL you specify. Each page will be transformed into a PDF document.

[optional] [default to False]

max_depth

int

Max depth of recursion when following links, only when follow_links is `true`. Max_depth of 0 means don’t follow any links, max_depth of 1 means follow only top-level links, etc. Use -1 for automatic (system settings).

[optional] [default to -1]

max_documents

int

Max number of documents when following links, only when follow_links is `true`. Use None for automatic (system defaults). Use -1 for max (system limit).

[optional]

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

Return type

JobDetails

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

201

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

create_ingest_upload_job

JobDetails create_ingest_upload_job(upload_id, collection_id, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)

Creates a job to ingest uploaded document

Creates a job to ingest uploaded document identified to a given collection

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.job_details import JobDetails
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    upload_id = 'upload_id_example' # str | Id of uploaded document
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)

    try:
        # Creates a job to ingest uploaded document
        api_response = api_instance.create_ingest_upload_job(upload_id, collection_id, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check)
        print("The response of DocumentIngestionApi->create_ingest_upload_job:\n")
        pprint(api_response)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->create_ingest_upload_job: %s\n" % e)

Parameters

Name

Type

Description

Notes

upload_id

str

Id of uploaded document

collection_id

str

String id of the collection to add the ingested documents into.

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

Return type

JobDetails

HTTP request headers

  • Content-Type: Not defined

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

201

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

ingest_from_azure_blob_storage

ingest_from_azure_blob_storage(collection_id, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout, ingest_from_azure_blob_storage_body=ingest_from_azure_blob_storage_body)

Adds files from the Azure Blob Storage into a collection.

Adds files from the Azure Blob Storage into a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_azure_blob_storage_body import IngestFromAzureBlobStorageBody
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)
    timeout = 300 # int | Timeout in seconds (optional) (default to 300)
    ingest_from_azure_blob_storage_body = h2ogpte.rest.IngestFromAzureBlobStorageBody() # IngestFromAzureBlobStorageBody |  (optional)

    try:
        # Adds files from the Azure Blob Storage into a collection.
        api_instance.ingest_from_azure_blob_storage(collection_id, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout, ingest_from_azure_blob_storage_body=ingest_from_azure_blob_storage_body)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->ingest_from_azure_blob_storage: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

timeout

int

Timeout in seconds

[optional] [default to 300]

ingest_from_azure_blob_storage_body

IngestFromAzureBlobStorageBody

[optional]

Return type

void (empty response body)

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

204

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

ingest_from_file_system

ingest_from_file_system(collection_id, ingest_from_file_system_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)

Adds files from the local system into a collection.

Adds files from the local system into a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_file_system_body import IngestFromFileSystemBody
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    ingest_from_file_system_body = h2ogpte.rest.IngestFromFileSystemBody() # IngestFromFileSystemBody | 
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)
    timeout = 300 # int | Timeout in seconds (optional) (default to 300)

    try:
        # Adds files from the local system into a collection.
        api_instance.ingest_from_file_system(collection_id, ingest_from_file_system_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->ingest_from_file_system: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

ingest_from_file_system_body

IngestFromFileSystemBody

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

timeout

int

Timeout in seconds

[optional] [default to 300]

Return type

void (empty response body)

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

204

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

ingest_from_gcs

ingest_from_gcs(collection_id, ingest_from_gcs_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)

Adds files from the Google Cloud Storage into a collection.

Adds files from the Google Cloud Storage into a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_gcs_body import IngestFromGcsBody
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    ingest_from_gcs_body = h2ogpte.rest.IngestFromGcsBody() # IngestFromGcsBody | 
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)
    timeout = 300 # int | Timeout in seconds (optional) (default to 300)

    try:
        # Adds files from the Google Cloud Storage into a collection.
        api_instance.ingest_from_gcs(collection_id, ingest_from_gcs_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->ingest_from_gcs: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

ingest_from_gcs_body

IngestFromGcsBody

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

timeout

int

Timeout in seconds

[optional] [default to 300]

Return type

void (empty response body)

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

204

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

ingest_from_plain_text

ingest_from_plain_text(collection_id, file_name, body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, timeout=timeout)

Adds plain text to a collection.

Adds plain text to a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    file_name = 'file_name_example' # str | String of the file name to use for the document.
    body = 'body_example' # str | The text that will ingested into a collection.
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    timeout = 300 # int | Timeout in seconds (optional) (default to 300)

    try:
        # Adds plain text to a collection.
        api_instance.ingest_from_plain_text(collection_id, file_name, body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, timeout=timeout)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->ingest_from_plain_text: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

file_name

str

String of the file name to use for the document.

body

str

The text that will ingested into a collection.

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

timeout

int

Timeout in seconds

[optional] [default to 300]

Return type

void (empty response body)

HTTP request headers

  • Content-Type: text/plain

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

204

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

ingest_from_s3

ingest_from_s3(collection_id, ingest_from_s3_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)

Adds files from the AWS S3 storage into a collection.

Adds files from the AWS S3 storage into a collection.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_s3_body import IngestFromS3Body
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    ingest_from_s3_body = h2ogpte.rest.IngestFromS3Body() # IngestFromS3Body | 
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)
    timeout = 300 # int | Timeout in seconds (optional) (default to 300)

    try:
        # Adds files from the AWS S3 storage into a collection.
        api_instance.ingest_from_s3(collection_id, ingest_from_s3_body, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->ingest_from_s3: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

ingest_from_s3_body

IngestFromS3Body

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

timeout

int

Timeout in seconds

[optional] [default to 300]

Return type

void (empty response body)

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

204

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

ingest_from_website

ingest_from_website(collection_id, ingest_from_website_body, follow_links=follow_links, max_depth=max_depth, max_documents=max_documents, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)

Crawls and ingest a URL into a collection.

Crawls and ingest a URL into a collection. The web page or document linked from this URL will be imported.

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.ingest_from_website_body import IngestFromWebsiteBody
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    ingest_from_website_body = h2ogpte.rest.IngestFromWebsiteBody() # IngestFromWebsiteBody | 
    follow_links = False # bool | Whether to import all web pages linked from this URL will be imported. External links will be ignored. Links to other pages on the same domain will be followed as long as they are at the same level or below the URL you specify. Each page will be transformed into a PDF document. (optional) (default to False)
    max_depth = -1 # int | Max depth of recursion when following links, only when follow_links is `true`. Max_depth of 0 means don't follow any links, max_depth of 1 means follow only top-level links, etc. Use -1 for automatic (system settings). (optional) (default to -1)
    max_documents = 56 # int | Max number of documents when following links, only when follow_links is `true`. Use None for automatic (system defaults). Use -1 for max (system limit). (optional)
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)
    timeout = 300 # int | Timeout in seconds (optional) (default to 300)

    try:
        # Crawls and ingest a URL into a collection.
        api_instance.ingest_from_website(collection_id, ingest_from_website_body, follow_links=follow_links, max_depth=max_depth, max_documents=max_documents, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->ingest_from_website: %s\n" % e)

Parameters

Name

Type

Description

Notes

collection_id

str

String id of the collection to add the ingested documents into.

ingest_from_website_body

IngestFromWebsiteBody

follow_links

bool

Whether to import all web pages linked from this URL will be imported. External links will be ignored. Links to other pages on the same domain will be followed as long as they are at the same level or below the URL you specify. Each page will be transformed into a PDF document.

[optional] [default to False]

max_depth

int

Max depth of recursion when following links, only when follow_links is `true`. Max_depth of 0 means don’t follow any links, max_depth of 1 means follow only top-level links, etc. Use -1 for automatic (system settings).

[optional] [default to -1]

max_documents

int

Max number of documents when following links, only when follow_links is `true`. Use None for automatic (system defaults). Use -1 for max (system limit).

[optional]

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

timeout

int

Timeout in seconds

[optional] [default to 300]

Return type

void (empty response body)

HTTP request headers

  • Content-Type: application/json

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

204

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

ingest_upload

ingest_upload(upload_id, collection_id, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)

Ingest uploaded document

Ingests uploaded document identified to a given collection

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    upload_id = 'upload_id_example' # str | Id of uploaded document
    collection_id = 'collection_id_example' # str | String id of the collection to add the ingested documents into.
    gen_doc_summaries = False # bool | Whether to auto-generate document summaries (uses LLM). (optional) (default to False)
    gen_doc_questions = False # bool | Whether to auto-generate sample questions for each document (uses LLM). (optional) (default to False)
    audio_input_language = 'auto' # str | Language of audio files. (optional) (default to 'auto')
    ocr_model = 'auto' # str | Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made). (optional) (default to 'auto')
    tesseract_lang = 'tesseract_lang_example' # str | Which language to use when using ocr_model=\"tesseract\". (optional)
    keep_tables_as_one_chunk = True # bool | When tables are identified by the table parser the table tokens will be kept in a single chunk. (optional)
    chunk_by_page = True # bool | Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`. (optional)
    handwriting_check = True # bool | Check pages for handwriting. Will use specialized models if handwriting is found. (optional)
    timeout = 300 # int | Timeout in seconds (optional) (default to 300)

    try:
        # Ingest uploaded document
        api_instance.ingest_upload(upload_id, collection_id, gen_doc_summaries=gen_doc_summaries, gen_doc_questions=gen_doc_questions, audio_input_language=audio_input_language, ocr_model=ocr_model, tesseract_lang=tesseract_lang, keep_tables_as_one_chunk=keep_tables_as_one_chunk, chunk_by_page=chunk_by_page, handwriting_check=handwriting_check, timeout=timeout)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->ingest_upload: %s\n" % e)

Parameters

Name

Type

Description

Notes

upload_id

str

Id of uploaded document

collection_id

str

String id of the collection to add the ingested documents into.

gen_doc_summaries

bool

Whether to auto-generate document summaries (uses LLM).

[optional] [default to False]

gen_doc_questions

bool

Whether to auto-generate sample questions for each document (uses LLM).

[optional] [default to False]

audio_input_language

str

Language of audio files.

[optional] [default to ‘auto’]

ocr_model

str

Which method to use to extract text from images using AI-enabled optical character recognition (OCR) models. docTR is best for Latin text, PaddleOCR is best for certain non-Latin languages, Tesseract covers a wide range of languages. Mississippi works well on handwriting. - `auto` - Automatic will auto-select the best OCR model for every page. - `off` - Disable OCR for speed, but all images will then be skipped (also no image captions will be made).

[optional] [default to ‘auto’]

tesseract_lang

str

Which language to use when using ocr_model="tesseract".

[optional]

keep_tables_as_one_chunk

bool

When tables are identified by the table parser the table tokens will be kept in a single chunk.

[optional]

chunk_by_page

bool

Each page will be a chunk. `keep_tables_as_one_chunk` will be ignored if this is `true`.

[optional]

handwriting_check

bool

Check pages for handwriting. Will use specialized models if handwriting is found.

[optional]

timeout

int

Timeout in seconds

[optional] [default to 300]

Return type

void (empty response body)

HTTP request headers

  • Content-Type: Not defined

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

204

Successful operation

-

401

Unauthorized - Invalid or missing API key

-

upload_file

UploadedFile upload_file(file=file)

Uploads file to H2OGPTe instance

Example

  • Bearer Authentication (bearerAuth):

import h2ogpte.rest
from h2ogpte.rest.models.uploaded_file import UploadedFile
from h2ogpte.rest.rest import ApiException
from pprint import pprint

# Defining the host is optional and defaults to https://h2ogpte.genai.h2o.ai/api/v1
# See configuration.py for a list of all supported configuration parameters.
configuration = h2ogpte.rest.Configuration(
    host = "https://h2ogpte.genai.h2o.ai/api/v1"
)

# The client must configure the authentication and authorization parameters
# in accordance with the API server security policy.
# Examples for each auth method are provided below, use the example that
# satisfies your auth use case.

# Configure Bearer authorization: bearerAuth
configuration = h2ogpte.rest.Configuration(
    access_token = os.environ["BEARER_TOKEN"]
)

# Enter a context with an instance of the API client
with h2ogpte.rest.ApiClient(configuration) as api_client:
    # Create an instance of the API class
    api_instance = h2ogpte.rest.DocumentIngestionApi(api_client)
    file = None # bytearray |  (optional)

    try:
        api_response = api_instance.upload_file(file=file)
        print("The response of DocumentIngestionApi->upload_file:\n")
        pprint(api_response)
    except Exception as e:
        print("Exception when calling DocumentIngestionApi->upload_file: %s\n" % e)

Parameters

Name

Type

Description

Notes

file

bytearray

[optional]

Return type

UploadedFile

HTTP request headers

  • Content-Type: multipart/form-data

  • Accept: application/json

HTTP response details

Status code

Description

Response headers

200

Successful operation

-

401

Unauthorized - Invalid or missing API key

-