Getting Started with h2oGPTe ============================ The `h2ogpte` Python client lets users integrate with `h2oGPTe `__. To access h2oGPTe, use the following URL: - https://h2ogpte.genai.h2o.ai h2oGPTe Configuration ------------------------------- The following steps describe how to prepare the h2oGPTe **API key** needed to access the server: 1. Log in to https://h2ogpte.genai.h2o.ai 2. Navigate to ``Settings`` > ``API Keys`` and create or get the API key. Upload Documents, Audio, Video, Images ... ------------------------------------------ h2oGPTe is able to ingest a wide variety of data ranging from documents (PDF, text, web pages) to video. Create h2oGPTe client and use it to upload the documents and ingest them: .. code-block:: python from h2ogpte import H2OGPTE client = H2OGPTE( address="https://h2ogpte.genai.h2o.ai", api_key=API_KEY) # Chat with LLM chat_session_id = client.create_chat_session() with client.connect(chat_session_id) as session: # Simple Question for Document Collection answer = session.query( "Can you hallucinate?", ).content print(answer) # Create Collection collection_id = client.create_collection( name="My first h2oGPTe collection", description="PDF -> text -> summary", ) file_path = "...path to document(s)..." with open(file_path.resolve(), "rb") as f: upload_id = client.upload(file_path.name, f) # Converting the input into chunked text and embeddings... client.ingest_uploads(collection_id, [upload_id]) Talk to Collection ------------------ Start a Q&A session: .. code-block:: python chat_session_id = client.create_chat_session(collection_id) with client.connect(chat_session_id) as session: # Simple Question for Document Collection answer = session.query( "What was net revenue?", ).content print(answer) Advanced Controls for Document Q&A ---------------------------------- From the client, you can control the LLM, the RAG type, and the prompting. The client can also return streaming responses. .. code-block:: python chat_session_id = client.create_chat_session(collection_id) with client.connect(chat_session_id) as session: # Choose different LLM answer = session.query( "What was net revenue?", llm="gpt-4-0613", ).content print(answer) # No RAG (LLM only) - documents ignored answer = session.query( message="Who are you?", rag_config={ "rag_type": "llm_only", }, ).content print(answer) # RAG (Retrieval Augmented Generation) answer = session.query( message="What was net revenue?", rag_config={ "rag_type": "rag", }, ).content print(answer) # HyDE RAG (Hypothetical Document Embedding) hyde1 = session.query( message="What was net revenue?", rag_config={"rag_type": "hyde1"}, ).content print(hyde1) # HyDE RAG+ (Combined HyDE+RAG) hyde2 = session.query( message="What was net revenue?", rag_config={"rag_type": "hyde2"}, ).content print(hyde2) # Custom System Prompt answer = session.query( message="What was net revenue?", system_prompt="YOU ARE THE UPPERCASE MACHINE. YOU ANSWER IN UPPERCASE LETTERS.", ).content print(answer) # Custom RAG prompting (e.g., for foreign languages) answer = session.query( message="Was war der Umsatz?", system_prompt="Sie sind ein Professor der Deutschen Sprache.", pre_prompt_query="Achten Sie darauf und merken Sie sich die folgenden Informationen, die bei der Beantwortung der Frage oder des Imperativs nach Ende des Kontexts hilfreich sein werden.\n", prompt_query="Nur nach den Informationen in den Dokumentenquellen, die im oben genannten Kontext bereitgestellt wurden, ", ).content print(answer) # Streaming partial_msg = "" full_msg = "" def callback(message): nonlocal full_msg nonlocal partial_msg if isinstance(message, ChatMessage): full_msg = message.content elif isinstance(message, PartialChatMessage): partial_msg += message.content print(partial_msg) session.query("What was net revenue?", timeout=60, callback=callback) Self-Reflection --------------- Ask another LLM for a reflection of the answer given the question and the context provided. Can be used to evaluate the LLM's performance (to some extent, requires a strong LLM). .. code-block:: python self_reflection_config = dict( llm_reflection="gpt-4-0613", prompt_reflection='Here\'s the prompt and the response:\n"""Prompt:\n%s\n"""\n\n"""Response:\n%s\n"""\n\nWhat is the quality of the response for the given prompt? Answer with GOOD or BAD.', system_prompt_reflection="", llm_args_reflection="{}", ) chat_session_id = client.create_chat_session(collection_id) with client.connect(chat_session_id) as session: reply = session.query( message="What color are roses", self_reflection_config=self_reflection_config, ).content print(reply) reflection = client.list_chat_message_meta_part( reply.id, "self_reflection" ).content print(reflection) Summarization of Documents -------------------------- Create a custom summary of a document: .. code-block:: python documents = client.list_documents_in_collection(collection_id, offset=0, limit=99) document_id = documents[0].id summary = client.process_document( document_id=document_id, pre_prompt_summary="Summarize the content below into a list of bullets.\n", prompt_summary="Now summarize the above into a couple of paragraphs.", max_num_chunks=200, sampling_strategy="auto", ) # Summary for s in summary.content.split("\n"): print(s) Summarization of Arbitrary Text Chunks -------------------------------------- Create a summary from arbitrary text blocks: .. code-block:: python summary = client.summarize_content( pre_prompt_summary="Summarize the content below into a list of bullets.\n", text_context_list=["long text to summarize", "more text to summarize", "yet more tet to summarize"], prompt_summary="Now summarize the above into a couple of paragraphs.", ) # Summary for s in summary.content.split("\n"): print(s) Data Extraction --------------- You can extract data with custom prompts: .. code-block:: python extract = client.extract_data( text_context_list=["Jack Smith", "Jane Doe and her husband Jim Doe", "This is nothing important"], pre_prompt_extract="Pay attention and look at all people. Your job is to collect their names.\n", prompt_extract="List all people names as JSON.", keep_intermediate_results=True, ) # List of LLM answers per text input for extract_list_item in extract.content: for s in extract_list_item.split("\n"): print(s) Similarly get action plans, translations, hashtags, ...