{ "cells": [ { "cell_type": "markdown", "id": "6c4d4faf-ab84-4a72-a80e-535b211747cd", "metadata": { "tags": [] }, "source": [ "# Partial dependence / Individual Conditional Expectation (PD/ICE) Explainer Demo\n", "\n", "This example demonstrates how to interpret a **scikit-learn** model using\n", "the H2O Sonar library and retrieve the data and **partial dependence plot**." ] }, { "cell_type": "code", "execution_count": 15, "id": "69f414e3-bc88-478b-bed5-890352b1041a", "metadata": {}, "outputs": [], "source": [ "import logging\n", "import os\n", "\n", "import pandas\n", "import datatable\n", "import webbrowser\n", "\n", "from h2o_sonar import interpret\n", "from h2o_sonar.lib.api import commons, explainers\n", "from h2o_sonar.lib.api.models import ModelApi\n", "from h2o_sonar.explainers.pd_ice_explainer import PdIceExplainer\n", "\n", "from sklearn.ensemble import GradientBoostingClassifier" ] }, { "cell_type": "code", "execution_count": 16, "id": "bef37207-bd90-4a60-a927-bbc2c54ab149", "metadata": {}, "outputs": [], "source": [ "# dataset\n", "dataset_path = \"../../data/creditcard.csv\"\n", "target_col = \"default payment next month\"\n", "df = pandas.read_csv(dataset_path)\n", "(X, y) = df.drop(target_col, axis=1), df[target_col]\n", "\n", "# results\n", "results_location = \"../../results\"\n", "os.makedirs(results_location, exist_ok=True)" ] }, { "cell_type": "code", "execution_count": 17, "id": "bbe0ca51", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'id': 'h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer',\n", " 'name': 'PdIceExplainer',\n", " 'display_name': 'Partial Dependence Plot',\n", " 'description': 'Partial dependence plot (PDP) portrays the average prediction\\nbehavior of the model across the domain of an input variable along with +/- 1\\nstandard deviation bands. Individual Conditional Expectations plot (ICE) displays\\nthe prediction behavior for an individual row of data when an input variable is\\ntoggled across its domain.\\n\\nPD binning:\\n\\n**Integer** feature:\\n\\n* bins in **numeric** mode:\\n * bins are integers\\n * (at most) `grid_resolution` integer values in between minimum and maximum\\n of feature values\\n * bin values are created as evenly as possible\\n * minimum and maximum is included in bins\\n (if `grid_resolution` is bigger or equal to 2)\\n* bins in **categorical** mode:\\n * bins are integers\\n * top `grid_resolution` values from feature values ordered by frequency\\n (int values are converted to strings and most frequent values are used\\n as bins)\\n* quantile bins in **numeric** mode:\\n * bins are integers\\n * bin values are created with the aim that there will be the same number of\\n observations per bin\\n * q-quantile used to created ``q`` bins where ``q`` is specified by PD parameter\\n* quantile bins in **categorical** mode:\\n * not supported\\n\\n**Float** feature:\\n\\n* bins in **numeric** mode:\\n * bins are floats\\n * `grid_resolution` float values in between minimum and maximum of feature\\n values\\n * bin values are created as evenly as possible\\n * minimum and maximum is included in bins\\n (if `grid_resolution` is bigger or equal to 2)\\n* bins in **categorical** mode:\\n * bins are floats\\n * top `grid_resolution` values from feature values ordered by frequency\\n (float values are converted to strings and most frequent values are used\\n as bins)\\n* quantile bins in **numeric** mode:\\n * bins are floats\\n * bin values are created with the aim that there will be the same number of\\n observations per bin\\n * q-quantile used to created ``q`` bins where ``q`` is specified by PD parameter\\n* quantile bins in **categorical** mode:\\n * not supported\\n\\n**String** feature:\\n\\n* bins in **numeric** mode:\\n * not supported\\n* bins in **categorical** mode:\\n * bins are strings\\n * top `grid_resolution` values from feature values ordered by frequency\\n* quantile bins:\\n * not supported\\n\\n**Date/datetime** feature:\\n\\n* bins in **numeric** mode:\\n * bins are dates\\n * `grid_resolution` date values in between minimum and maximum of feature\\n values\\n * bin values are created as evenly as possible:\\n 1. dates are parsed and converted to epoch timestamps i.e integers\\n 2. bins are created as in case of numeric integer binning\\n 3. integer bins are converted back to original date format\\n * minimum and maximum is included in bins\\n (if `grid_resolution` is bigger or equal to 2)\\n* bins in **categorical** mode:\\n * bins are dates\\n * top `grid_resolution` values from feature values ordered by frequency\\n (dates are handled as opaque strings and most frequent values are used\\n as bins)\\n* quantile bins:\\n * not supported\\n\\nPD out of range binning:\\n\\n**Integer** feature:\\n\\n* OOR bins in **numeric** mode:\\n * OOR bins are integers\\n * (at most) `oor_grid_resolution` integer values are added below minimum and\\n above maximum\\n * bin values are created by adding/substracting rounded standard deviation\\n (of feature values) above and below maximum and minimum `oor_grid_resolution`\\n times\\n * 1 used used if rounded standard deviation would be 0\\n * if feature is of unsigned integer type, then bins below 0\\n are not created\\n * if rounded standard deviation and/or `oor_grid_resolution` is so high\\n that it would cause lower OOR bins to be negative numbers, then standard\\n deviation of size 1 is tried instead\\n* OOR bins in **categorical** mode:\\n * same as numeric mode\\n\\n**Float** feature:\\n\\n* OOR bins in **numeric** mode:\\n * OOR bins are floats\\n * `oor_grid_resolution` float values are added below minimum and above maximum\\n * bin values are created by adding/substracting standard deviation\\n (of feature values) above and below maximum and minimum `oor_grid_resolution`\\n times\\n* OOR bins in **categorical** mode:\\n * same as numeric mode\\n\\n**String** feature:\\n\\n* bins in **numeric** mode:\\n * not supported\\n* bins in **categorical** mode:\\n * OOR bins are strings\\n * value `UNSEEN` is added as OOR bin\\n\\n**Date** feature:\\n\\n* bins in **numeric** mode:\\n * not supported\\n* bins in **categorical** mode:\\n * OOR bins are strings\\n * value `UNSEEN` is added as OOR bin\\n\\n',\n", " 'model_types': ['iid', 'time_series'],\n", " 'can_explain': ['regression', 'binomial', 'multinomial'],\n", " 'explanation_scopes': ['global_scope', 'local_scope'],\n", " 'explanations': [{'explanation_type': 'global-partial-dependence',\n", " 'name': 'PartialDependenceExplanation',\n", " 'category': None,\n", " 'scope': 'global',\n", " 'has_local': None,\n", " 'formats': []},\n", " {'explanation_type': 'local-individual-conditional-explanation',\n", " 'name': 'IndividualConditionalExplanation',\n", " 'category': None,\n", " 'scope': 'local',\n", " 'has_local': None,\n", " 'formats': []}],\n", " 'parameters': [{'name': 'sample_size',\n", " 'description': 'Sample size for Partial Dependence Plot.',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 25000,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'max_features',\n", " 'description': 'Partial Dependence Plot number of features (to see all features used by model set to -1).',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 10,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'features',\n", " 'description': 'Partial Dependence Plot feature list.',\n", " 'comment': '',\n", " 'type': 'list',\n", " 'val': None,\n", " 'predefined': [],\n", " 'tags': ['SOURCE_DATASET_COLUMN_NAMES'],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'oor_grid_resolution',\n", " 'description': 'Partial Dependence Plot number of out of range bins.',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 0,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'quantile-bin-grid-resolution',\n", " 'description': 'Partial Dependence Plot quantile binning (total quantile points used to create bins).',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 0,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'grid_resolution',\n", " 'description': 'Partial Dependence Plot observations per bin (number of equally spaced points used to create bins).',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 20,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'center',\n", " 'description': 'Center Partial Dependence Plot using ICE centered at 0.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': False,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'sort_bins',\n", " 'description': 'Ensure bin values sorting.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': True,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'histograms',\n", " 'description': 'Enable histograms.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': True,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'quantile-bins',\n", " 'description': 'Per-feature quantile binning (Example: if choosing features\\n F1 and F2, this parameter is \\'{\"F1\": 2,\"F2\": 5}\\'. Note, you can\\n set all features to use the same quantile binning with the\\n `Partial Dependence Plot quantile binning` parameter and then\\n adjust the quantile binning for a subset of PDP features with\\n this parameter).',\n", " 'comment': '',\n", " 'type': 'str',\n", " 'val': '',\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'numcat_num_chart',\n", " 'description': 'Unique feature values count driven Partial Dependence Plot binning and chart selection.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': True,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'numcat_threshold',\n", " 'description': 'Threshold for Partial Dependence Plot binning and chart selection (<=threshold categorical, >threshold numeric).',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 11,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'debug_residuals',\n", " 'description': 'Debug model residuals.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': False,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''}],\n", " 'keywords': ['run-by-default',\n", " 'can-add-feature',\n", " 'explains-feature-behavior',\n", " 'h2o-sonar']}" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# explainer description\n", "interpret.describe_explainer(PdIceExplainer)" ] }, { "cell_type": "markdown", "id": "90d401d2-14cd-4686-982f-3cac9e9f5eb7", "metadata": { "tags": [] }, "source": [ "## Interpretation" ] }, { "cell_type": "code", "execution_count": 18, "id": "0ba8f0aa-2e0e-4a0a-93ab-77ce9e968fa0", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2023-03-12 23:27:53,358 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 BEGIN calculation\n", "2023-03-12 23:27:53,359 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 loading dataset\n", "2023-03-12 23:27:53,360 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 loaded dataset has 10000 rows and 25 columns\n", "2023-03-12 23:27:53,360 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 getting features list, importanceand metadata\n", "2023-03-12 23:27:53,361 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 all most important model features: ['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6']\n", "2023-03-12 23:27:53,362 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 features used by model: ['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6']\n", "2023-03-12 23:27:53,362 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885: calculating PD for features ['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4']\n", "2023-03-12 23:27:53,363 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 feature metadata: {'id': [], 'categorical': [], 'numeric': [], 'catnum': [], 'date': [], 'time': [], 'datetime': [], 'text': [], 'image': [], 'date-format': [], 'quantile-bin': {}}\n", "2023-03-12 23:27:53,363 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 1 frame strategy: True\n", "2023-03-12 23:27:53,364 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 residual PD/ICE should NOT be calculated, but y has been specified - setting it None\n", "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 10.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 20.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 30.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n", "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n", "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 40.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 50.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 60.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n", "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 70.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 80.0%\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n", "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n", "X does not have valid feature names, but GradientBoostingClassifier was fitted with feature names\n", "2023-03-12 23:27:55,425 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 saving PD to ../../results/h2o-sonar/mli_experiment_a30a4f57-9c78-4c5f-9c8e-85198b523c1c/explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-pd-dai-model.json\n", "2023-03-12 23:27:55,428 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 computation finished & stored to: ../../results/h2o-sonar/mli_experiment_a30a4f57-9c78-4c5f-9c8e-85198b523c1c/explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-pd-dai-model.json\n", "2023-03-12 23:27:55,431 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: ID/True\n", "2023-03-12 23:27:55,441 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: ID/False\n", "2023-03-12 23:27:55,452 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: LIMIT_BAL/True\n", "2023-03-12 23:27:55,453 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: LIMIT_BAL/False\n", "2023-03-12 23:27:55,456 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: SEX/True\n", "2023-03-12 23:27:55,458 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: SEX/False\n", "2023-03-12 23:27:55,462 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: EDUCATION/True\n", "2023-03-12 23:27:55,468 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: EDUCATION/False\n", "2023-03-12 23:27:55,472 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: MARRIAGE/True\n", "2023-03-12 23:27:55,480 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: MARRIAGE/False\n", "2023-03-12 23:27:55,483 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: AGE/True\n", "2023-03-12 23:27:55,485 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: AGE/False\n", "2023-03-12 23:27:55,488 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: PAY_0/True\n", "2023-03-12 23:27:55,492 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: PAY_0/False\n", "2023-03-12 23:27:55,502 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: PAY_2/True\n", "2023-03-12 23:27:55,505 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: PAY_2/False\n", "2023-03-12 23:27:55,516 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: PAY_3/True\n", "2023-03-12 23:27:55,520 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: PAY_3/False\n", "2023-03-12 23:27:55,532 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: PAY_4/True\n", "2023-03-12 23:27:55,534 - h2o_sonar.explainers.pd_ice_explainer.PdIceExplainerLogger - INFO - PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 creating histogram: PAY_4/False\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 90.0%\n", "h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer: progress 100.0%\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHHCAYAAACcHAM1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1BElEQVR4nO3de3RU5b3/8c9kcg8kIUSSEBKCgqCCYMHEqKdizRFblhZrFRQFEbFSUDBeOT2Ad9RjES8oRw3qsVYUSy1VG6XxiguJgqipGqkCiZALiCQhQG7z/P7wNyMjCWSSmdl7Ju/XWrNWs+eZne9+XJpPn+9+9jiMMUYAAAA2FmF1AQAAAEdCYAEAALZHYAEAALZHYAEAALZHYAEAALZHYAEAALZHYAEAALZHYAEAALZHYAEAALZHYAEAALZHYAFgC08//bQcDoc++ugjSdKtt94qh8PhecXHxys7O1vnnnuunnrqKTU1NVlcMYBgirS6AAA4nMcee0y9evVSU1OTtm/frtdff11XXHGFlixZoldeeUVZWVlWlwggCAgsAGztt7/9rVJTUz0/L1iwQM8995ymTJmiCy+8UB988IGF1QEIFlpCAELO5MmTdeWVV2r9+vVas2aN1eUACAICC4CQdNlll0mS3njjDYsrARAMBBYAIWn48OGSpK+//triSgAEA4EFQEjq1auXJKmhocHiSgAEA4EFQEjau3evJKl3794WVwIgGAgsAEJSWVmZJGnw4MEWVwIgGAgsAELSs88+K0kaN26cxZUACAYCC4CQ8+c//1lPPvmk8vPzddZZZ1ldDoAg4MFxAGztpZdeUq9evdTc3Ox50u3777+vkSNHauXKlVaXByBICCwAbG3mzJmSpNjYWKWmpmrUqFFavny5LrnkEsXExFhcHYBgcRhjjNVFAAAAHA73sAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsjsAAAANsLm+ewuFwu7dixQ71795bD4bC6HAAA0AnGGDU0NKh///6KiOh4HSVsAsuOHTuUlZVldRkAAKALKisrNWDAgA7fD5vA4v6K+crKSiUmJlpcDQAA6Iz6+nplZWV5/o53JGwCi7sNlJiYSGABACDEHOl2Dm66BQAAtkdgAQAAtkdgAQAAthc297AAAGBHbW1tamlpsboMy0RFRcnpdHb7PAQWAAACwBij6upq7dmzx+pSLJecnKz09PRuPSeNwAIAQAC4w0q/fv0UHx/fIx9qaozRvn37VFtbK0nKyMjo8rkILAAA+FlbW5snrPTt29fqciwVFxcnSaqtrVW/fv263B7iplsAAPzMfc9KfHy8xZXYg3seunMvD4EFAIAA6YltoPb4Yx4ILAAAwPa6FFiWLl2qnJwcxcbGKi8vT6WlpR2OHTt2rBwOxyGv8ePHe8bceuutGjZsmBISEtSnTx8VFBRo/fr1XSkNAAAEWU5OjpYsWRLQ3+FzYHnhhRdUWFiohQsXauPGjRo5cqTGjRvnuQP4p1atWqWqqirPq6ysTE6nUxdeeKFnzLHHHqtHHnlEn332mdauXaucnBydffbZ2rlzZ9evDAAAhA2fdwktXrxYM2bM0LRp0yRJy5Yt06uvvqrly5frlltuOWR8SkqK188rVqxQfHy8V2C55JJLDvkdRUVF+vTTT3XWWWf5WmKPZ4xRZWWljDFWl+KTpKQkJScnW10GAMCGfAoszc3N2rBhg+bNm+c5FhERoYKCAq1bt65T5ygqKtKkSZOUkJDQ4e94/PHHlZSUpJEjR3Z4nqamJjU1NXl+rq+v7+RVhL9JkybpxRdftLoMn0VGRmrt2rXKy8uzuhQA6LHGjh2r4cOHS5KeffZZRUVFaebMmbr99tvlcDhUW1ur6dOn65///KfS09N15513BqUunwLLrl271NbWprS0NK/jaWlp+vLLL4/4+dLSUpWVlamoqOiQ91555RVNmjRJ+/btU0ZGhtasWaPU1NQOz7Vo0SLddtttvpTfIxhjVFxcLEmKiYkJmTvUW1tb1draqrvvvlt/+9vfrC4HAPzK/QA1K3TloXXPPPOMpk+frtLSUn300Ue66qqrlJ2drRkzZujyyy/Xjh079NZbbykqKkrXXntth7eF+FNQHxxXVFSkESNGKDc395D3zjzzTG3atEm7du3SE088oYsuukjr169Xv3792j3XvHnzVFhY6Pm5vr5eWVlZAas9VOzevduz2rR79+6QeQZAeXm5hg0bptWrV6u8vFxDhw61uiQA8Jt9+/apV69elvzuvXv3dtjV6EhWVpYeeOABORwODR06VJ999pkeeOABnXHGGfrHP/6h0tJSnXzyyZJ++Nt+3HHHBaJ0Lz7ddJuamiqn06mamhqv4zU1NUpPTz/sZxsbG7VixQpNnz693fcTEhI0ePBgnXLKKSoqKlJkZGS7KzFuMTExSkxM9HpB+uabbyT98PjjUAkrkjR06FCdd955kn64hwkAYJ1TTjnFa1UmPz9fmzdv1hdffKHIyEiNHj3a896wYcOCcv+hTyss0dHRGj16tEpKSjRhwgRJksvlUklJiWbPnn3Yz65cuVJNTU269NJLO/W7XC6X1z0q6Bx3YDn66KMtrsR3N9xwg1avXq1nnnlGd9xxR4erawAQauLj47V3717Lfnc48LklVFhYqKlTp2rMmDHKzc3VkiVL1NjY6Nk1NGXKFGVmZmrRokVenysqKtKECRMO+U6FxsZG3XXXXTrvvPOUkZGhXbt2aenSpdq+fbvXTiJ0jjuwHHPMMRZX4rvTTz9dubm5Ki0t1dKlS7lHCUDYcDgcPrdlrPTTZ6F98MEHGjJkiIYNG6bW1lZt2LDB0xIqLy8PyjdS+/wclokTJ+r+++/XggULNGrUKG3atEnFxcWeG3ErKipUVVXl9Zny8nKtXbu23XaQ0+nUl19+qQsuuEDHHnuszj33XH333Xd67733dMIJJ3Txsnqur7/+WlJorrA4HA7dcMMNkqRHH33UshvUAKCnq6ioUGFhocrLy/X888/r4Ycf1pw5czR06FCdc845+t3vfqf169drw4YNuvLKKz1fcBhIXbrpdvbs2R22gN5+++1Djg0dOrTDZ4LExsZq1apVXSkD7QjllpAknX/++crJydHWrVv1f//3f7r66qutLgkAepwpU6Zo//79ys3NldPp1Jw5c3TVVVdJkp566ildeeWVOuOMM5SWlqY777xT8+fPD3hNQd0lhMAL5ZaQ9MOzWK677jrNmTPH85DCrn4VOQCga6KiorRkyRI99thjh7yXnp6uV155xevYZZddFvCa+PLDMNLc3KzKykpJobvCIklXXHGFkpOTtXnzZv3973+3uhwAgA0QWMLItm3b5HK5FB8ff8jD/UJJr169NHPmTEnS/fffb3E1AAA7ILCEkYPvXwmVJ9x25JprrlFUVJTef/99ffDBB1aXAwA9xttvvx3wb17uCgJLGAnlHUI/lZGR4Xlmzx//+EeLqwEAWI3AEkZCfYfQT7m/emHVqlWeMAYAoaSjHbI9jT/mgcASRkJ9h9BPDR8+XOecc45cLpctlycBoCNRUVGSxPOk/j/3PLjnpSvY1hxGwqkl5HbDDTeouLhYy5cv12233aaUlBSrSwKAI3I6nUpOTvZ8i3FXvjE5HLi/pbq2tlbJycndekwFgSVMGGPCriUkSb/4xS88T1RetmyZ/uu//svqkgCgU9xfCuwOLT1ZcnLyEb8k+UgcJkwabPX19UpKSlJdXV2P/ObmnTt3ql+/fnI4HNq3b59iY2OtLslvnnvuOV166aVKS0vTtm3bFBMTY3VJANBpbW1tamlpsboMy0RFRR12ZaWzf79ZYQkT7nZQZmZmWIUVSbrooot0yy236Ntvv9Vzzz2nK664wuqSAKDTnE4nT+z2A266DRPh2A5yi4qK0pw5cyT98CA5l8tlcUUAgGAjsISJcNsh9FMzZsxQ79699cUXX6i4uNjqcgAAQUZgCRPhuEPoYElJSZ5vCuVx/QDQ8xBYwkQ4t4Tc5syZo8jISL311lvauHGj1eUAAIKIwBImwr0lJElZWVmaOHGiJB7XDwA9DYElDBw4cEDbt2+XFN4rLJJ0/fXXS5JeeOEFVVRUWFwNACBYCCxhYOvWrTLGqFevXkpNTbW6nIA66aST9Itf/EJtbW168MEHrS4HABAkBJYwcHA7qCc8+vmGG26QJD3xxBOqq6uzuBoAQDAQWMJAuO8Q+qlzzjlHxx9/vBoaGvTEE09YXQ4AIAgILGGgJ+wQOpjD4fCssixZskTNzc0WVwQACDQCSxjoCTuEfuqSSy5Renq6tm/frhdffNHqcgAAAUZgCQM9rSUkSTExMbrmmmsk/fAguTD5Dk8AQAcILCHOGNPjWkJuV199teLj4/XJJ5+opKTE6nIAAAFEYAlxNTU12r9/vyIiIjRw4ECrywmqlJQUTZ8+XRIPkgOAcEdgCXHudlBWVpaio6Mtrib45s6dq4iICBUXF6usrMzqcgAAAUJgCXE9tR3kdvTRR+uCCy6QxCoLAIQzAkuI6+mBRfrxcf3PPfecduzYYXE1AIBAILCEOHdLqCdtaf6pvLw8nX766WppadHDDz9sdTkAgAAgsIQ4Vlh+4H6Q3LJly7R3716LqwEA+BuBJcQRWH5w7rnnasiQIdqzZ4+WL19udTkAAD8jsISwffv2qaqqSlLPbglJUkREhOdelgceeECtra0WVwQA8CcCSwjbsmWLJCkpKUl9+vSxuBrrTZkyRampqdq6datWrVpldTkAAD8isISwg9tBDofD4mqsFxcXp1mzZknicf0AEG4ILCGsJ37p4ZH8/ve/V2xsrD788EO99957VpcDAPATAksI64lfengk/fr109SpUyXxIDkACCcElhDGDqH2XXfddXI4HFq9erXKy8utLgcA4AcElhBGS6h9Q4cO1XnnnSdJWrx4scXVAAD8gcASolwuFyssh+F+kNwzzzyj2tpai6sBAHQXgSVEVVVVqampSU6nU1lZWVaXYzunnXaacnNz1dTUpKVLl1pdDgCgmwgsIcq9ujJw4EBFRUVZXI39OBwOzyrLo48+qn379llcEQCgOyKtLgBdww6hIzv//PM1aNAgbdmyRbfffrvGjh1rdUkAENLOPPNMxcTEWPK7CSwhivtXjiwyMlLXXXedrr32Wt1777269957rS4JAEJaVVWV0tPTLfndBJYQxQ6hzpk+fbreffddz3wBALouMtK62EBgCVG0hDonPj5eK1eutLoMAEA3cdNtiKIlBADoSQgsIWjv3r2eZ4vQEgIA9AQElhDkXl1JSUlRUlKSxdUAABB4BJYQRDsIANDTEFhCEDuEAAA9DYElBLFDCADQ0xBYQhAtIQBAT0NgCUG0hAAAPQ2BJcS0tbVpy5YtklhhAQD0HASWELN9+3a1tLQoKipKAwYMsLocAACCgsASYtztoJycHDmdTourAQAgOAgsIYYdQgCAnojAEmLYIQQA6IkILCGGHUIAgJ6IwBJiaAkBAHoiAkuIoSUEAOiJCCwhpK6uTt99950kAgsAoGchsIQQ9wPjjjrqKPXu3dviagAACB4CSwjh/hUAQE9FYAkh7BACAPRUBJYQwg23AICeisASQmgJAQB6KgJLCKElBADoqQgsIaK1tVXbtm2TxAoLAKDn6VJgWbp0qXJychQbG6u8vDyVlpZ2OHbs2LFyOByHvMaPHy9Jamlp0c0336wRI0YoISFB/fv315QpU7Rjx46uXVGYqqysVGtrq6Kjo9W/f3+rywEAIKh8DiwvvPCCCgsLtXDhQm3cuFEjR47UuHHjVFtb2+74VatWqaqqyvMqKyuT0+nUhRdeKEnat2+fNm7cqPnz52vjxo1atWqVysvLdd5553XvysKMux00aNAgRUSwMAYA6Fkiff3A4sWLNWPGDE2bNk2StGzZMr366qtavny5brnllkPGp6SkeP28YsUKxcfHewJLUlKS1qxZ4zXmkUceUW5urioqKpSdne1riWGJ+1cAAD2ZT/9Xvbm5WRs2bFBBQcGPJ4iIUEFBgdatW9epcxQVFWnSpElKSEjocExdXZ0cDoeSk5M7HNPU1KT6+nqvVzhjhxAAoCfzKbDs2rVLbW1tSktL8zqelpam6urqI36+tLRUZWVluvLKKzscc+DAAd188826+OKLlZiY2OG4RYsWKSkpyfPKysrq/IWEIJ7BAgDoyYJ6M0RRUZFGjBih3Nzcdt9vaWnRRRddJGOMHnvsscOea968eaqrq/O8KisrA1GybdASAgD0ZD7dw5Kamiqn06mamhqv4zU1NUpPTz/sZxsbG7VixQrdfvvt7b7vDivbtm3Tm2++edjVFUmKiYlRTEyML+WHNFpCAICezKcVlujoaI0ePVolJSWeYy6XSyUlJcrPzz/sZ1euXKmmpiZdeumlh7znDiubN2/WP//5T/Xt29eXssLe999/rz179kj6YZcQAAA9jc+7hAoLCzV16lSNGTNGubm5WrJkiRobGz27hqZMmaLMzEwtWrTI63NFRUWaMGHCIWGkpaVFv/3tb7Vx40a98soramtr89wPk5KSoujo6K5eW9hwt4PS09MPe7MyAADhyufAMnHiRO3cuVMLFixQdXW1Ro0apeLiYs+NuBUVFYc8J6S8vFxr167VG2+8ccj5tm/frtWrV0uSRo0a5fXeW2+9pbFjx/paYtihHQQA6Ol8DiySNHv2bM2ePbvd995+++1Djg0dOlTGmHbH5+TkdPgefsAOIQBAT8cjU0MAO4QAAD0dgSUE0BICAPR0BJYQQEsIANDTEVhsrqWlRRUVFZJoCQEAei4Ci81t27ZNLpdLsbGxR3w4HwAA4YrAYnMHt4McDofF1QAAYA0Ci82xQwgAAAKL7bFDCAAAAovtsUMIAAACi+3REgIAgMBia8YYWkIAAIjAYmvfffedGhoaJP3wnUsAAPRUBBYbc7eDMjMzFRcXZ3E1AABYh8BiY7SDAAD4AYHFxtghBADADwgsNsYOIQAAfkBgsTFWWAAA+AGBxca4hwUAgB8QWGyqqalJ3377rSRaQgAAEFhsatu2bTLGKCEhQUcddZTV5QAAYCkCi00d3A5yOBwWVwMAgLUILDbFDiEAAH5EYLEpdggBAPAjAotNsUMIAIAfEVhsipYQAAA/IrDYkDGGlhAAAAchsNhQbW2tGhsb5XA4NHDgQKvLAQDAcgQWG3KvrmRlZSkmJsbiagAAsB6BxYZoBwEA4I3AYkPsEAIAwBuBxYbYIQQAgDcCiw3REgIAwBuBxYZoCQEA4I3AYjP79+/Xjh07JNESAgDAjcBiM1u3bpUkJSYmKiUlxdpiAACwCQKLzRzcDnI4HBZXAwCAPRBYbIYbbgEAOBSBxWbY0gwAwKEILDbDDiEAAA5FYLEZWkIAAByKwGIjxhhaQgAAtIPAYiNVVVU6cOCAIiIilJ2dbXU5AADYBoHFRtyrK9nZ2YqKirK4GgAA7IPAYiO0gwAAaB+BxUbYIQQAQPsILDbCDiEAANpHYLERWkIAALSPwGIjtIQAAGgfgcUmGhsbVVNTI4nAAgDATxFYbGLLli2SpD59+qhPnz4WVwMAgL0QWGyCG24BAOgYgcUmuH8FAICOEVhsgh1CAAB0jMBiE7SEAADoGIHFJmgJAQDQMQKLDbhcLs8uIVpCAAAcisBiAzt27FBzc7MiIyM1YMAAq8sBAMB2CCw24G4HDRw4UJGRkRZXAwCA/RBYbIAdQgAAHB6BxQbYIQQAwOERWGyAHUIAABwegcUGaAkBAHB4BBYboCUEAMDhEVgs1tDQoJ07d0oisAAA0BECi8XcqyupqalKTEy0uBoAAOyJwGIx2kEAABwZgcVi7BACAODICCwWY4cQAABHRmCxGC0hAACOrEuBZenSpcrJyVFsbKzy8vJUWlra4dixY8fK4XAc8ho/frxnzKpVq3T22Werb9++cjgc2rRpU1fKCkm0hAAAODKfA8sLL7ygwsJCLVy4UBs3btTIkSM1btw41dbWtjt+1apVqqqq8rzKysrkdDp14YUXesY0Njbq9NNP17333tv1KwlBbW1t2rp1qyRaQgAAHI7PXw28ePFizZgxQ9OmTZMkLVu2TK+++qqWL1+uW2655ZDxKSkpXj+vWLFC8fHxXoHlsssukyTPH++e4ttvv1Vra6uio6PVv39/q8sBAMC2fFphaW5u1oYNG1RQUPDjCSIiVFBQoHXr1nXqHEVFRZo0aZISEhJ8qzQMudtBOTk5cjqdFlcDAIB9+bTCsmvXLrW1tSktLc3reFpamr788ssjfr60tFRlZWUqKiryrcp2NDU1qampyfNzfX19t88ZbOwQAgCgc4K6S6ioqEgjRoxQbm5ut8+1aNEiJSUleV5ZWVl+qDC42CEEAEDn+BRYUlNT5XQ6VVNT43W8pqZG6enph/1sY2OjVqxYoenTp/teZTvmzZunuro6z6uystIv5w0mdggBANA5PgWW6OhojR49WiUlJZ5jLpdLJSUlys/PP+xnV65cqaamJl166aVdq/QnYmJilJiY6PUKNbSEAADoHJ93CRUWFmrq1KkaM2aMcnNztWTJEjU2Nnp2DU2ZMkWZmZlatGiR1+eKioo0YcIE9e3b95Bz7t69WxUVFdqxY4ckqby8XJKUnp5+xJWbUEZLCACAzvE5sEycOFE7d+7UggULVF1drVGjRqm4uNhzI25FRYUiIrwXbsrLy7V27Vq98cYb7Z5z9erVnsAjSZMmTZIkLVy4ULfeequvJYaEPXv2aPfu3ZKkQYMGWVwNAAD25jDGGKuL8If6+nolJSWprq4uJNpDGzdu1OjRo5WWlqbq6mqrywEAwBKd/fvNdwlZhHYQAACdR2CxCIEFAIDOI7BYhC3NAAB0HoHFImxpBgCg8wgsFqElBABA5xFYLNDS0qJt27ZJIrAAANAZBBYLVFZWqq2tTbGxscrIyLC6HAAAbI/AYgF3O2jQoEGHPGQPAAAcir+WFmCHEAAAviGwWIAdQgAA+IbAYgF2CAEA4BsCiwVoCQEA4BsCS5AZYzyBhZYQAACdQ2AJsu+//1719fWSpJycHGuLAQAgRBBYgsy9upKRkaH4+HiLqwEAIDQQWIKMHUIAAPiOwBJk7BACAMB3BJYgY4cQAAC+I7AEGS0hAAB8R2AJMlpCAAD4jsASRM3NzaqsrJREYAEAwBcEliDatm2bXC6X4uPjlZaWZnU5AACEDAJLEB3cDnI4HBZXAwBA6CCwBBE7hAAA6BoCSxCxQwgAgK4hsAQRO4QAAOgaAksQ0RICAKBrCCxBYoyhJQQAQBcRWIJk165d2rt3rxwOhwYOHGh1OQAAhBQCS5C420GZmZmKjY21uBoAAEILgSVIaAcBANB1BJYgYYcQAABdR2AJEnYIAQDQdQSWIKElBABA1xFYgoSWEAAAXUdgCYIDBw5o+/btkggsAAB0BYElCLZu3SpjjHr37q3U1FSrywEAIOQQWILg4HaQw+GwuBoAAEIPgSUIuH8FAIDuIbAEgXtLMzuEAADoGgJLELDCAgBA9xBYgoDAAgBA9xBYAswYw0PjAADoJgJLgNXU1Gjfvn2KiIhQdna21eUAABCSCCwB5l5dycrKUnR0tMXVAAAQmggsAcYOIQAAuo/AEmDccAsAQPcRWAKMwAIAQPcRWALM3RIisAAA0HUElgBjSzMAAN1HYAmgffv2qaqqShIrLAAAdAeBJYC2bNkiSUpKSlKfPn0srgYAgNBFYAmgg9tBDofD4moAAAhdBJYAYocQAAD+QWAJIHYIAQDgHwSWAGKHEAAA/kFgCSBaQgAA+AeBJUBcLheBBQAAPyGwBEhVVZWamprkdDqVnZ1tdTkAAIQ0AkuAuFdXBg4cqMjISIurAQAgtBFYAoQdQgAA+A+BJUDYIQQAgP8QWAKEG24BAPAfAkuA0BICAMB/CCwBQksIAAD/IbAEwN69e1VbWyuJFRYAAPyBwBIA7tWVlJQUJSUlWVwNAAChj8ASALSDAADwLwJLALBDCAAA/yKwBACBBQAA/+pSYFm6dKlycnIUGxurvLw8lZaWdjh27Nixcjgch7zGjx/vGWOM0YIFC5SRkaG4uDgVFBRo8+bNXSnNFtxbmmkJAQDgHz4HlhdeeEGFhYVauHChNm7cqJEjR2rcuHGeXTE/tWrVKlVVVXleZWVlcjqduvDCCz1j7rvvPj300ENatmyZ1q9fr4SEBI0bN04HDhzo+pVZiBUWAAD8y2GMMb58IC8vTyeffLIeeeQRSZLL5VJWVpauueYa3XLLLUf8/JIlS7RgwQJVVVUpISFBxhj1799f119/vW644QZJUl1dndLS0vT0009r0qRJnaqrvr5eSUlJqqurU2Jioi+X5FdtbW2Kj49Xc3Oztm7dqoEDB1pWCwAAdtfZv98+rbA0Nzdrw4YNKigo+PEEEREqKCjQunXrOnWOoqIiTZo0SQkJCZKkLVu2qLq62uucSUlJysvLO+w5m5qaVF9f7/Wyg+3bt6u5uVlRUVEaMGCA1eUAABAWfAosu3btUltbm9LS0ryOp6Wlqbq6+oifLy0tVVlZma688krPMffnfD3nokWLlJSU5HllZWX5cikB424H5eTkyOl0WlwNAADhIai7hIqKijRixAjl5uZ2+1zz5s1TXV2d51VZWemHCruP+1cAAPA/nwJLamqqnE6nampqvI7X1NQoPT39sJ9tbGzUihUrNH36dK/j7s/5es6YmBglJiZ6veyAHUIAAPifT4ElOjpao0ePVklJieeYy+VSSUmJ8vPzD/vZlStXqqmpSZdeeqnX8UGDBik9Pd3rnPX19Vq/fv0Rz2lHrLAAAOB/kb5+oLCwUFOnTtWYMWOUm5urJUuWqLGxUdOmTZMkTZkyRZmZmVq0aJHX54qKijRhwgT17dvX67jD4dDcuXN15513asiQIRo0aJDmz5+v/v37a8KECV2/MosQWAAA8D+fA8vEiRO1c+dOLViwQNXV1Ro1apSKi4s9N81WVFQoIsJ74aa8vFxr167VG2+80e45b7rpJjU2Nuqqq67Snj17dPrpp6u4uFixsbFduCRr0RICAMD/fH4Oi13Z4TksdXV1Sk5O9tTTu3dvS+oAACBUBOQ5LDi8LVu2SJKOOuoowgoAAH5EYPEj2kEAAAQGgcWPuOEWAIDAILD4EYEFAIDAILD4ES0hAAACg8DiR6ywAAAQGAQWP2ltbdW2bdskEVgAAPA3AoufVFZWqrW1VTExMerfv7/V5QAAEFYILH7ibgcNGjTokCf9AgCA7uEvq59w/woAAIFDYPETdggBABA4BBY/YYUFAIDAIbD4CYEFAIDAIbD4ibslRGABAMD/CCx+8P3332vPnj2SCCwAAAQCgcUP3O2g9PR0xcfHW1wNAADhh8DiB7SDAAAILAKLH7hXWNjSDABAYBBY/IAdQgAABBaBxQ8ILAAABBaBxQ94yi0AAIFFYOmmlpYWVVRUSGKFBQCAQCGwdFNFRYVcLpfi4uKUnp5udTkAAIQlAks3Hbyl2eFwWFwNAADhicDSTdxwCwBA4BFYuonAAgBA4BFYuokdQgAABB6BpZtYYQEAIPAILN1gjCGwAAAQBASWbvjuu+9UX18vSRo0aJDF1QAAEL4ILN3gXl3JzMxUbGysxdUAABC+CCzdQDsIAIDgILB0AzuEAAAIDgJLN7DCAgBAcBBYuoHAAgBAcBBYuoGWEAAAwUFg6aKmpiZ9++23klhhAQAg0AgsXbRt2zYZY5SQkKCjjjrK6nIAAAhrBJYuOrgd5HA4LK4GAIDwRmDpIm64BQAgeAgsXURgAQAgeAgsXcQOIQAAgofA0kWssAAAEDwEli4wxhBYAAAIIgJLF9TW1qqxsVEOh0M5OTlWlwMAQNgjsHSBe3UlKytL0dHRFlcDAED4I7B0Ae0gAACCi8DSBewQAgAguAgsXcAKCwAAwUVg6QICCwAAwUVg6QJaQgAABBeBxUf79+/Xjh07JLHCAgBAsBBYfLR161ZJUmJiolJSUqwtBgCAHoLA4iP3/SvHHHOMHA6HxdUAANAzEFh85L5/hXYQAADBQ2DxETuEAAAIPgKLjw5uCQEAgOAgsPiIlhAAAMFHYPGBMYaWEAAAFiCw+KC6uloHDhyQ0+lUdna21eUAANBjEFh84G4HZWdnKyoqyuJqAADoOQgsPqAdBACANQgsPiCwAABgDQKLD/jSQwAArEFg8QErLAAAWIPA4gMCCwAA1iCwdFJjY6Oqq6sl0RICACDYCCydtGXLFklSnz59lJycbG0xAAD0MASWTqIdBACAdboUWJYuXaqcnBzFxsYqLy9PpaWlhx2/Z88ezZo1SxkZGYqJidGxxx6r1157zfN+Q0OD5s6dq4EDByouLk6nnnqqPvzww66UFjDsEAIAwDo+B5YXXnhBhYWFWrhwoTZu3KiRI0dq3Lhxqq2tbXd8c3Oz/vM//1Nbt27VSy+9pPLycj3xxBPKzMz0jLnyyiu1Zs0aPfvss/rss8909tlnq6CgQNu3b+/6lfkZKywAAFjH58CyePFizZgxQ9OmTdPxxx+vZcuWKT4+XsuXL293/PLly7V79269/PLLOu2005STk6MzzjhDI0eOlCTt379ff/nLX3Tffffp5z//uQYPHqxbb71VgwcP1mOPPda9q/MjAgsAANbxKbA0Nzdrw4YNKigo+PEEEREqKCjQunXr2v3M6tWrlZ+fr1mzZiktLU3Dhw/X3Xffrba2NklSa2ur2traFBsb6/W5uLg4rV27tsNampqaVF9f7/UKJFpCAABYx6fAsmvXLrW1tSktLc3reFpammfL70998803eumll9TW1qbXXntN8+fP1x//+EfdeeedkqTevXsrPz9fd9xxh3bs2KG2tjb96U9/0rp161RVVdVhLYsWLVJSUpLnlZWV5cul+MTlcnl2CbHCAgBA8AV8l5DL5VK/fv30+OOPa/To0Zo4caL+8Ic/aNmyZZ4xzz77rIwxyszMVExMjB566CFdfPHFiojouLx58+aprq7O86qsrAzYNezYsUPNzc2KjIzUgAEDAvZ7AABA+yJ9GZyamiqn06mamhqv4zU1NUpPT2/3MxkZGYqKipLT6fQcO+6441RdXa3m5mZFR0frmGOO0TvvvKPGxkbV19crIyNDEydOPOxqRkxMjGJiYnwpv8vc7aCcnBxFRvo0ZQAAwA98WmGJjo7W6NGjVVJS4jnmcrlUUlKi/Pz8dj9z2mmn6d///rdcLpfn2FdffaWMjAxFR0d7jU1ISFBGRoa+//57vf766/r1r3/tS3kBww23AABYy+eWUGFhoZ544gk988wz+uKLLzRz5kw1NjZq2rRpkqQpU6Zo3rx5nvEzZ87U7t27NWfOHH311Vd69dVXdffdd2vWrFmeMa+//rqKi4u1ZcsWrVmzRmeeeaaGDRvmOafVCCwAAFjL5/7GxIkTtXPnTi1YsEDV1dUaNWqUiouLPTfiVlRUeN17kpWVpddff13XXXedTjzxRGVmZmrOnDm6+eabPWPq6uo0b948ffvtt0pJSdEFF1ygu+66S1FRUX64xO5jhxAAANZyGGOM1UX4Q319vZKSklRXV6fExES/nvuUU07R+vXr9Ze//EW/+c1v/HpuAAB6ss7+/ea7hDqBlhAAANYisBxBQ0ODdu7cKYnAAgCAVQgsR+BeXUlNTfV7qwkAAHQOgeUIaAcBAGA9AssRsEMIAADrEViOgBUWAACsR2A5AgILAADWI7AcgTuw0BICAMA6BJbDMMaora1NDoeDFRYAACzEVw8fhsPh0Ndff60DBw4E7ZuhAQDAoQgsnRAbG2t1CQAA9Gi0hAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO2Fzbc1G2MkSfX19RZXAgAAOsv9d9v9d7wjYRNYGhoaJElZWVkWVwIAAHzV0NCgpKSkDt93mCNFmhDhcrm0Y8cO9e7dWw6Hw2/nra+vV1ZWliorK5WYmOi388Ib8xwczHPwMNfBwTwHRyDn2RijhoYG9e/fXxERHd+pEjYrLBERERowYEDAzp+YmMi/DEHAPAcH8xw8zHVwMM/BEah5PtzKihs33QIAANsjsAAAANsjsBxBTEyMFi5cqJiYGKtLCWvMc3Awz8HDXAcH8xwcdpjnsLnpFgAAhC9WWAAAgO0RWAAAgO0RWAAAgO0RWAAAgO0RWI5g6dKlysnJUWxsrPLy8lRaWmp1Sba1aNEinXzyyerdu7f69eunCRMmqLy83GvMgQMHNGvWLPXt21e9evXSBRdcoJqaGq8xFRUVGj9+vOLj49WvXz/deOONam1t9Rrz9ttv62c/+5liYmI0ePBgPf3004G+PNu655575HA4NHfuXM8x5tk/tm/frksvvVR9+/ZVXFycRowYoY8++sjzvjFGCxYsUEZGhuLi4lRQUKDNmzd7nWP37t2aPHmyEhMTlZycrOnTp2vv3r1eYz799FP9x3/8h2JjY5WVlaX77rsvKNdnB21tbZo/f74GDRqkuLg4HXPMMbrjjju8vleGee6ad999V+eee6769+8vh8Ohl19+2ev9YM7rypUrNWzYMMXGxmrEiBF67bXXfL8ggw6tWLHCREdHm+XLl5t//etfZsaMGSY5OdnU1NRYXZotjRs3zjz11FOmrKzMbNq0yfzqV78y2dnZZu/evZ4xV199tcnKyjIlJSXmo48+Mqeccoo59dRTPe+3traa4cOHm4KCAvPxxx+b1157zaSmppp58+Z5xnzzzTcmPj7eFBYWms8//9w8/PDDxul0muLi4qBerx2UlpaanJwcc+KJJ5o5c+Z4jjPP3bd7924zcOBAc/nll5v169ebb775xrz++uvm3//+t2fMPffcY5KSkszLL79sPvnkE3PeeeeZQYMGmf3793vGnHPOOWbkyJHmgw8+MO+9954ZPHiwufjiiz3v19XVmbS0NDN58mRTVlZmnn/+eRMXF2f+93//N6jXa5W77rrL9O3b17zyyitmy5YtZuXKlaZXr17mwQcf9IxhnrvmtddeM3/4wx/MqlWrjCTz17/+1ev9YM3r+++/b5xOp7nvvvvM559/bv77v//bREVFmc8++8yn6yGwHEZubq6ZNWuW5+e2tjbTv39/s2jRIgurCh21tbVGknnnnXeMMcbs2bPHREVFmZUrV3rGfPHFF0aSWbdunTHmh3/BIiIiTHV1tWfMY489ZhITE01TU5MxxpibbrrJnHDCCV6/a+LEiWbcuHGBviRbaWhoMEOGDDFr1qwxZ5xxhiewMM/+cfPNN5vTTz+9w/ddLpdJT083//M//+M5tmfPHhMTE2Oef/55Y4wxn3/+uZFkPvzwQ8+Yf/zjH8bhcJjt27cbY4x59NFHTZ8+fTzz7v7dQ4cO9fcl2dL48ePNFVdc4XXsN7/5jZk8ebIxhnn2l58GlmDO60UXXWTGjx/vVU9eXp753e9+59M10BLqQHNzszZs2KCCggLPsYiICBUUFGjdunUWVhY66urqJEkpKSmSpA0bNqilpcVrTocNG6bs7GzPnK5bt04jRoxQWlqaZ8y4ceNUX1+vf/3rX54xB5/DPaan/XOZNWuWxo8ff8hcMM/+sXr1ao0ZM0YXXnih+vXrp5NOOklPPPGE5/0tW7aourraa46SkpKUl5fnNc/JyckaM2aMZ0xBQYEiIiK0fv16z5if//znio6O9owZN26cysvL9f333wf6Mi136qmnqqSkRF999ZUk6ZNPPtHatWv1y1/+UhLzHCjBnFd//beEwNKBXbt2qa2tzes/6JKUlpam6upqi6oKHS6XS3PnztVpp52m4cOHS5Kqq6sVHR2t5ORkr7EHz2l1dXW7c+5+73Bj6uvrtX///kBcju2sWLFCGzdu1KJFiw55j3n2j2+++UaPPfaYhgwZotdff10zZ87Utddeq2eeeUbSj/N0uP9GVFdXq1+/fl7vR0ZGKiUlxad/FuHslltu0aRJkzRs2DBFRUXppJNO0ty5czV58mRJzHOgBHNeOxrj67yHzbc1w15mzZqlsrIyrV271upSwk5lZaXmzJmjNWvWKDY21upywpbL5dKYMWN09913S5JOOukklZWVadmyZZo6darF1YWPF198Uc8995z+/Oc/64QTTtCmTZs0d+5c9e/fn3mGF1ZYOpCamiqn03nIzoqamhqlp6dbVFVomD17tl555RW99dZbGjBggOd4enq6mpubtWfPHq/xB89penp6u3Pufu9wYxITExUXF+fvy7GdDRs2qLa2Vj/72c8UGRmpyMhIvfPOO3rooYcUGRmptLQ05tkPMjIydPzxx3sdO+6441RRUSHpx3k63H8j0tPTVVtb6/V+a2urdu/e7dM/i3B24403elZZRowYocsuu0zXXXedZ/WQeQ6MYM5rR2N8nXcCSweio6M1evRolZSUeI65XC6VlJQoPz/fwsrsyxij2bNn669//avefPNNDRo0yOv90aNHKyoqymtOy8vLVVFR4ZnT/Px8ffbZZ17/kqxZs0aJiYmePx75+fle53CP6Sn/XM466yx99tln2rRpk+c1ZswYTZ482fO/mefuO+200w7Zlv/VV19p4MCBkqRBgwYpPT3da47q6+u1fv16r3nes2ePNmzY4Bnz5ptvyuVyKS8vzzPm3XffVUtLi2fMmjVrNHToUPXp0ydg12cX+/btU0SE958ip9Mpl8sliXkOlGDOq9/+W+LTLbo9zIoVK0xMTIx5+umnzeeff26uuuoqk5yc7LWzAj+aOXOmSUpKMm+//bapqqryvPbt2+cZc/XVV5vs7Gzz5ptvmo8++sjk5+eb/Px8z/vu7bZnn3222bRpkykuLjZHHXVUu9ttb7zxRvPFF1+YpUuX9qjttu05eJeQMcyzP5SWlprIyEhz1113mc2bN5vnnnvOxMfHmz/96U+eMffcc49JTk42f/vb38ynn35qfv3rX7e7LfSkk04y69evN2vXrjVDhgzx2ha6Z88ek5aWZi677DJTVlZmVqxYYeLj48N6u+3Bpk6dajIzMz3bmletWmVSU1PNTTfd5BnDPHdNQ0OD+fjjj83HH39sJJnFixebjz/+2Gzbts0YE7x5ff/9901kZKS5//77zRdffGEWLlzItuZAePjhh012draJjo42ubm55oMPPrC6JNuS1O7rqaee8ozZv3+/+f3vf2/69Olj4uPjzfnnn2+qqqq8zrN161bzy1/+0sTFxZnU1FRz/fXXm5aWFq8xb731lhk1apSJjo42Rx99tNfv6Il+GliYZ//4+9//boYPH25iYmLMsGHDzOOPP+71vsvlMvPnzzdpaWkmJibGnHXWWaa8vNxrzHfffWcuvvhi06tXL5OYmGimTZtmGhoavMZ88skn5vTTTzcxMTEmMzPT3HPPPQG/Nruor683c+bMMdnZ2SY2NtYcffTR5g9/+IPXNlnmuWveeuutdv+bPHXqVGNMcOf1xRdfNMcee6yJjo42J5xwgnn11Vd9vh6HMQc9ThAAAMCGuIcFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFAADYHoEFgKXGjh2ruXPndvh+Tk6OlixZErR6ANgT39YMwNY+/PBDJSQkWF0GAIsRWADY2lFHHWV1CQBsgJYQAMu1trZq9uzZSkpKUmpqqubPny/3t4b8tCXkcDj05JNP6vzzz1d8fLyGDBmi1atXW1Q5gGAhsACw3DPPPKPIyEiVlpbqwQcf1OLFi/Xkk092OP62227TRRddpE8//VS/+tWvNHnyZO3evTuIFQMINgILAMtlZWXpgQce0NChQzV58mRdc801euCBBzocf/nll+viiy/W4MGDdffdd2vv3r0qLS0NYsUAgo3AAsByp5xyihwOh+fn/Px8bd68WW1tbe2OP/HEEz3/OyEhQYmJiaqtrQ14nQCsQ2ABEHKioqK8fnY4HHK5XBZVAyAYCCwALLd+/Xqvnz/44AMNGTJETqfToooA2A2BBYDlKioqVFhYqPLycj3//PN6+OGHNWfOHKvLAmAjPIcFgOWmTJmi/fv3Kzc3V06nU3PmzNFVV11ldVkAbMRh3A87AAAAsClaQgAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPYILAAAwPb+H1L9HLPS20cpAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHGCAYAAABXQNCQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA1IUlEQVR4nO3de1xUBd7H8e8wwAAKqCE3F0NNsYuZWZBpZRulqaS7z5ZpeVcs9VmNLluZmnaxm0r2Mn3yWpuX8sltS80ulNtWJoW5ZplpWmrGzQIEBXU4zx89zMZykYGZOTPD5/16zeslhzOH35yM+XjOmRmLYRiGAAAAvFiA2QMAAACcDcECAAC8HsECAAC8HsECAAC8HsECAAC8HsECAAC8HsECAAC8HsECAAC8HsECAAC8HsECAAC8HsECQKtWrZLFYtHnn39e6/e///57WSwWPfPMM45lW7dulcVikcVi0csvv1zr/Xr37i2LxaKLLrqo2vLExEQNGjRIkjR69GjHduq7jR492qnH8ttbdHS0rr32Wr311lt13q+oqEghISGyWCzas2dPreuMHj1aLVu2bNAcAFwr0OwBAPi2kJAQrVmzRrfffnu15d9//70++eQThYSE1Hv/iRMnKjU11fH1wYMHNXPmTKWnp+uqq65yLO/UqZNTc82ZM0cdOnSQYRjKy8vTqlWrNGDAAL355puOWPqt9evXy2KxKDY2VqtXr9ajjz7q1M8D4F4EC4AmGTBggN544w0VFhYqKirKsXzNmjWKiYlR586d9csvv9R5/169eqlXr16Orz///HPNnDlTvXr1qhFBzrjxxht12WWXOb4eN26cYmJitHbt2lqD5eWXX9aAAQN07rnnas2aNQQL4GU4JQSgSQYPHiybzab169dXW75mzRrdcsstslqtJk1WXatWrRQaGqrAwJr/Tjt06JD++c9/6tZbb9Wtt96qgwcP6pNPPjFhSgB1IVgANElYWJgGDx6stWvXOpb961//0ldffaXhw4ebNldxcbEKCwtVUFCgr776SnfeeadKS0trPWqzdu1atWjRQoMGDVJycrI6deqk1atXmzA1gLpwSghAkw0fPlxpaWk6fPiwEhIStHr1anXs2FFXXHGFaTP99roYSbLZbFqxYoWuv/76GuuuXr1agwcPVmhoqCRp6NCheuGFF/Tss8/WekQGgOdxhAVAk91www1q06aN1q1bJ8MwtG7dOg0bNszUmRYtWqR3331X7777rl5++WVde+21Gj9+vDZs2FBtvV27dunLL7+sNu+wYcNUWFiot99+29NjA6gD/3QA0GRBQUG6+eabtWbNGiUnJ+vw4cOmng6SpOTk5GoX3Q4bNkw9evTQlClTNGjQIAUHB0v69WLbFi1aqGPHjtq/f7+kX1/5lJiYqNWrV2vgwIGmzA+gOoIFgEsMHz5cS5Ys0cMPP6zu3bvrggsuMHukagICAnTttdfq2Wef1b59+3ThhRfKMAytXbtWZWVltc6bn5+v0tJS3nsF8AIECwCX6NOnj9q3b6+tW7fqySefNHucWp05c0aSVFpaKkn6xz/+oSNHjmjOnDk6//zzq637yy+/KD09Xa+//nqTXl4NwDUIFgAuYbFYtHDhQn3xxRcaMWKE2ePUcPr0ab3zzjsKDg52xEnV6aB777231je4e/rpp7V69WqCBfACBAsAhxUrVmjLli01lg8ePLhB9x88eHCD13W3t956S998842kX0/trFmzRvv27dP999+viIgIVVRU6LXXXtP1119f57vx3nTTTXr22WeVn5+v6OhoSb+GT21vKtemTRtNmjTJfQ8IaOYIFgAOixcvrnV53759PTuIC8ycOdPx55CQEHXt2lWLFy/WxIkTJUmbNm1SUVGR0tLS6txGWlqa5s2bp3Xr1unPf/6zJOnUqVOaMWNGjXU7depEsABuZDEMwzB7CAAAgPrwPiwAAMDrcUoIgE8oLS11vLqnLm3btvWazy4C4FoECwCf8Mwzz2j27Nn1rnPw4EElJiZ6ZiAAHsU1LAB8woEDB3TgwIF61+nTp0+dr/gB4NsIFgAA4PX84pRQZWWljh49qvDwcFksFrPHAQAADWAYho4fP674+HgFBNT/OiC/CJajR48qISHB7DEAAEAjHD58WL/73e/qXccvgiU8PFzSrw84IiLC5GkAAEBDlJSUKCEhwfE8Xh+/CJaq00AREREECwAAPqYhl3PwxnEAAMDrESwAAMDrESwAAMDr+cU1LA1lt9t1+vRps8cwTVBQEG9bDgDwSc0iWAzDUG5uroqKiswexXStWrVSbGws71cDAPApzSJYqmIlOjpaYWFhzfLJ2jAMnThxQvn5+ZKkuLg4kycCAKDh/D5Y7Ha7I1bOOeccs8cxVWhoqCQpPz9f0dHRnB4CAPgMv7/otuqalbCwMJMn8Q5V+6E5X8sDAPA9fh8sVZrjaaDasB8AAL6o2QQLAADwXQQLAADwegSLn0lMTFRmZqbZYwAA4FJ+/yohwBedOHFCBQUFZo8BANWce+65pv1sggXwMgUFBerSpQtvdAjAq9hsNpWXl5v285tlsFS9iZoZnHnjur59++qiiy6SJP31r39VUFCQ7rzzTs2ZM0cWi0X5+fkaN26c3nvvPcXGxurRRx915+jwkJ07dzpiJSQkxNxhAOD/2Ww2U39+swyWEydOqGXLlqb87NLSUrVo0aLB67/44osaN26csrOz9fnnnys9PV3t27fXhAkTNHr0aB09elQffPCBgoKC9Oc//9nxTrbwXbm5uZKk6667Tu+9957J0wCAd2iWweJLEhIStGDBAlksFiUlJenLL7/UggULdM011+itt95Sdna2Lr/8cknS8uXLdf7555s8MZqqKlhiY2NNngQAvEezDJawsDCVlpaa9rOdccUVV1Q7hdSrVy/NmzdPe/bsUWBgoHr27On4XteuXdWqVStXjQqTECwAUFOzDBaLxeLUaRnAkwgWAKiJ92Hxctu3b6/29aeffqrOnTura9euOnPmjHJychzf27t3L68s8QMECwDURLB4uUOHDikjI0N79+7V2rVr9dxzz2nq1KlKSkpS//79NXHiRG3fvl05OTkaP3684xOZ4bsIFgCoiWDxciNHjtTJkyeVnJysyZMna+rUqUpPT5ckrVy5UvHx8brmmmv0xz/+Uenp6YqOjjZ5YjQVwQIANTXLa1h8SVBQkDIzM7V48eIa34uNjdXGjRurLRsxYoSnRoMbVFRU6Oeff5YkxcXFmTwNAHgPjrAAXqTqfXSCgoLUunVrk6cBAO9BsABepOp0UExMjAIC+N8TAKpwSsiLbd261ewR4GFcvwIAtWs2/4QzDMPsEbwC+8G7ESwAUDu/D5agoCBJMu3DDr1N1X6o2i/wLgQLANTO708JWa1WtWrVynExozOfluxPqj6hOj8/X61atZLVajV7JNSCYAGA2vl9sEj//uXPJxlLrVq14snQixEsAFC7ZhEsFotFcXFxio6O1unTp80exzRBQUEcWfFyBAsA1K5ZBEsVq9XKEza8GsECALXz+4tuAV9hGAbBAgB1IFgAL1FaWup4FVdMTIzJ0wCAdyFYAC9RdXSlZcuWatmypcnTAIB3IVgAL8HpIACoG8ECeAmCBQDqRrAAXoJgAYC6ESyAlyBYAKBuBAvgJQgWAKgbwQJ4CYIFAOpGsABegmABgLoRLICXIFgAoG4EC+AFKisrlZeXJ4lgAYDaECyAFzh27JjsdrskKTo62uRpAMD7ECyAF6g6HRQVFaWgoCCTpwEA70OwAF6A61cAoH4EC+AFCBYAqB/BAngBggUA6kewAF6AYAGA+hEsgBcgWACgfgQL4AUIFgCoH8ECeAGCBQDqR7AAXoBgAYD6ESyAySoqKvTzzz9LIlgAoC4EC2Cyqs8QCgoKUuvWrU2eBgC8E8ECmKzqdFBMTIwCAvhfEgBqw29HwGRcvwIAZ0ewACYjWADg7AgWwGQECwCcHcECmIxgAYCzI1gAkxEsAHB2BAtgMoIFAM6OYAFMRrAAwNkRLICJDMMgWACgARoVLIsWLVJiYqJCQkKUkpKi7OzsetfPzMxUUlKSQkNDlZCQoLvuukvl5eWO7z/88MOyWCzVbl27dm3MaIBPOX78uE6ePCmJYAGA+gQ6e4dXXnlFGRkZWrJkiVJSUpSZmal+/fpp7969io6OrrH+mjVrdP/992vFihW68sor9e2332r06NGyWCyaP3++Y70LL7xQ77333r8HC3R6NMDnVB1dCQ8PV4sWLUyeBgC8l9NHWObPn68JEyZozJgxuuCCC7RkyRKFhYVpxYoVta7/ySefqHfv3ho+fLgSExN1ww03aNiwYTWOygQGBio2NtZxi4qKatwjAnwIp4MAoGGcCpZTp04pJydHqamp/95AQIBSU1O1bdu2Wu9z5ZVXKicnxxEoBw4c0ObNmzVgwIBq6+3bt0/x8fHq2LGjbrvtNh06dKjOOSoqKlRSUlLtBvgiggUAGsap8y6FhYWy2+2KiYmptjwmJkbffPNNrfcZPny4CgsL1adPHxmGoTNnzuiOO+7Qgw8+6FgnJSVFq1atUlJSkn766SfNnj1bV111lXbv3q3w8PAa25w7d65mz57tzOiAVyJYAKBh3P4qoa1bt+rxxx/X888/rx07dmjDhg3atGmTHnnkEcc6N954o26++WZdfPHF6tevnzZv3qyioiK9+uqrtW7zgQceUHFxseN2+PBhdz8MwC0IFgBoGKeOsERFRclqtSovL6/a8ry8vDp/4c6YMUMjRozQ+PHjJUndunVTWVmZ0tPTNX36dAUE1GymVq1aqUuXLtq/f3+t27TZbLLZbM6MDnglggUAGsapIyzBwcHq2bOnsrKyHMsqKyuVlZWlXr161XqfEydO1IgSq9Uq6df3oKhNaWmpvvvuO8XFxTkzHuBzCBYAaBinXzuckZGhUaNG6bLLLlNycrIyMzNVVlamMWPGSJJGjhypdu3aae7cuZKktLQ0zZ8/Xz169FBKSor279+vGTNmKC0tzREu99xzj9LS0nTuuefq6NGjmjVrlqxWq4YNG+bChwp4H4IFABrG6WAZOnSoCgoKNHPmTOXm5uqSSy7Rli1bHBfiHjp0qNoRlYceekgWi0UPPfSQfvzxR7Vt21ZpaWl67LHHHOscOXJEw4YN07Fjx9S2bVv16dNHn376qdq2beuChwh4L4IFABrGYtR1XsaHlJSUKDIyUsXFxYqIiDB7HKBB7Ha7bDab7Ha7fvzxR8XHx5s9EgB4lDPP33yWEGCSY8eOyW63y2KxcDQRAM6CYAFMUnU6KCoqSkFBQSZPAwDejWABTML1KwDQcAQLYBKCBQAajmABTEKwAEDDESyASQgWAGg4ggUwCcECAA1HsAAmIVgAoOEIFsAkBAsANBzBApiEYAGAhiNYABNUVFTol19+kUSwAEBDECyACfLy8iRJQUFBat26tcnTAID3I1gAE/z2dJDFYjF5GgDwfgQLYAKuXwEA5xAsgAkIFgBwDsECmIBgAQDnECyACQgWAHAOwQKYgGABAOcQLIAJCBYAcA7BApiAYAEA5xAsgIcZhkGwAICTCBbAw44fP66TJ09KkmJiYkyeBgB8A8ECeFjV0ZXw8HC1aNHC5GkAwDcQLICHcToIAJxHsAAeRrAAgPMIFsDDCBYAcB7BAngYwQIAziNYAA8jWADAeQQL4GEECwA4j2ABPIxgAQDnESyAhxEsAOA8ggXwILvdrvz8fEkECwA4g2ABPKiwsFB2u10Wi0XR0dFmjwMAPoNgATyo6nRQ27ZtFRgYaPI0AOA7CBbAg7h+BQAah2ABPIhgAYDGIVgADyJYAKBxCBbAgwgWAGgcggXwIIIFABqHYAE8iGABgMYhWAAPIlgAoHEIFsCDCBYAaByCBfCQ8vJyFRUVSSJYAMBZBAvgIXl5eZKk4OBgtWrVytxhAMDHECyAh/z2dJDFYjF5GgDwLQQL4CFcvwIAjUewAB5CsABA4xEsgIcQLADQeAQL4CEECwA0HsECeAjBAgCNR7AAHkKwAEDjESyAhxAsANB4BAvgAYZhECwA0AQEC+ABJSUlKi8vlyTFxMSYPA0A+B6CBfCAqqMrERERCgsLM3kaAPA9BAvgAZwOAoCmIVgADyBYAKBpCBbAAwgWAGgaggXwAIIFAJqGYAE8gGABgKYhWAAPIFgAoGkIFsADCBYAaBqCBfAAggUAmoZgAdzMbrcrPz9fEsECAI1FsABuVlhYqMrKSlksFrVt29bscQDAJzUqWBYtWqTExESFhIQoJSVF2dnZ9a6fmZmppKQkhYaGKiEhQXfddZfjc1Uau03AV1SdDmrbtq0CAwNNngYAfJPTwfLKK68oIyNDs2bN0o4dO9S9e3f169fPccj7P61Zs0b333+/Zs2apT179mj58uV65ZVX9OCDDzZ6m4Av4foVAGg6p4Nl/vz5mjBhgsaMGaMLLrhAS5YsUVhYmFasWFHr+p988ol69+6t4cOHKzExUTfccIOGDRtW7QiKs9usqKhQSUlJtRvgrQgWAGg6p4Ll1KlTysnJUWpq6r83EBCg1NRUbdu2rdb7XHnllcrJyXEEyoEDB7R582YNGDCg0ducO3euIiMjHbeEhARnHgbgUQQLADSdU8FSWFgou92umJiYastjYmIcv5T/0/DhwzVnzhz16dNHQUFB6tSpk/r27es4JdSYbT7wwAMqLi523A4fPuzMwwA8imABgKZz+6uEtm7dqscff1zPP/+8duzYoQ0bNmjTpk165JFHGr1Nm82miIiIajfAWxEsANB0Tr1kISoqSlarVXl5edWW5+Xl1fnLeMaMGRoxYoTGjx8vSerWrZvKysqUnp6u6dOnN2qbgC8hWACg6Zw6whIcHKyePXsqKyvLsayyslJZWVnq1atXrfc5ceKEAgKq/xir1SpJMgyjUdsEfAnBAgBN5/SbQmRkZGjUqFG67LLLlJycrMzMTJWVlWnMmDGSpJEjR6pdu3aaO3euJCktLU3z589Xjx49lJKSov3792vGjBlKS0tzhMvZtgn4MoIFAJrO6WAZOnSoCgoKNHPmTOXm5uqSSy7Rli1bHBfNHjp0qNoRlYceekgWi0UPPfSQfvzxR7Vt21ZpaWl67LHHGrxNwFeVl5erqKhIEsECAE1hMQzDMHuIpiopKVFkZKSKi4u5ABde5YcfflBiYqKCg4NVXl4ui8Vi9kgA4DWcef7ms4QAN/rt6SBiBQAaj2AB3KgqWOLi4kyeBAB8G8ECuBEX3AKAaxAsgBsRLADgGgQL4EYECwC4BsECuBHBAgCuQbAAbkSwAIBrECyAGxEsAOAaBAvgJoZhECwA4CIEC+AmxcXFKi8vlyQ+ZgIAmohgAdyk6uhKZGSkQkNDTZ4GAHwbwQK4CaeDAMB1CBbATQgWAHAdggVwE4IFAFyHYAHchGABANchWAA3IVgAwHUIFsBNCBYAcB2CBXATggUAXIdgAdyEYAEA1yFYADew2+0qKCiQRLAAgCsQLIAbFBQUqLKyUgEBAWrbtq3Z4wCAzyNYADeoOh3Utm1bWa1Wk6cBAN9HsABuwPUrAOBaBAvgBgQLALgWwQK4AcECAK5FsABuQLAAgGsRLIAbECwA4FoEC+AGBAsAuBbBArgBwQIArkWwAG5AsACAaxEsgIudPHlSxcXFkggWAHAVggVwsby8PEmSzWZTZGSkydMAgH8gWAAX++3pIIvFYvI0AOAfCBbAxbh+BQBcj2ABXIxgAQDXI1gAFyNYAMD1CBbAxQgWAHA9ggVwMYIFAFyPYAFcjGABANcjWAAXI1gAwPUIFsCFDMMgWADADQgWwIWKi4tVUVEhSYqJiTF5GgDwHwQL4EJVR1ciIyMVGhpq8jQA4D8IFsCFOB0EAO5BsAAuVBUscXFxJk8CAP6FYAFciCMsAOAeBAvgQgQLALgHwQK4EMECAO5BsAAuRLAAgHsQLIALESwA4B4EC+BCBAsAuAfBAriI3W5XQUGBJIIFAFyNYAFcpKCgQJWVlQoICFBUVJTZ4wCAXyFYABepOh0UHR0tq9Vq8jQA4F8IFsBFuH4FANyHYAFchGABAPchWAAXIVgAwH0IFsBFCBYAcB+CBXARggUA3IdgAVyEYAEA9yFYABchWADAfQgWwEUIFgBwH4IFcIGTJ0+quLhYEsECAO5AsAAuUHV0JSQkRBERESZPAwD+p1HBsmjRIiUmJiokJEQpKSnKzs6uc92+ffvKYrHUuA0cONCxzujRo2t8v3///o0ZDTDFb08HWSwWk6cBAP8T6OwdXnnlFWVkZGjJkiVKSUlRZmam+vXrp7179yo6OrrG+hs2bNCpU6ccXx87dkzdu3fXzTffXG29/v37a+XKlY6vbTabs6MBpuH6FQBwL6eDZf78+ZowYYLGjBkjSVqyZIk2bdqkFStW6P7776+xfps2bap9vW7dOoWFhdUIFpvN1uBf9hUVFaqoqHB8XVJS4uzDAFyKYAEA93LqlNCpU6eUk5Oj1NTUf28gIECpqanatm1bg7axfPly3XrrrWrRokW15Vu3blV0dLSSkpJ055136tixY3VuY+7cuYqMjHTcEhISnHkYgMsRLADgXk4FS2Fhoex2u2JiYqotj4mJcfzCrk92drZ2796t8ePHV1vev39/vfTSS8rKytKTTz6pf/zjH7rxxhtlt9tr3c4DDzyg4uJix+3w4cPOPAzA5QgWAHAvp08JNcXy5cvVrVs3JScnV1t+6623Ov7crVs3XXzxxerUqZO2bt2q6667rsZ2bDYb17jAqxAsAOBeTh1hiYqKktVqVV5eXrXleXl5Z/1FXVZWpnXr1mncuHFn/TkdO3ZUVFSU9u/f78x4gGkIFgBwL6eCJTg4WD179lRWVpZjWWVlpbKystSrV69677t+/XpVVFTo9ttvP+vPOXLkiI4dO6a4uDhnxgNMQ7AAgHs5/T4sGRkZWrp0qV588UXt2bNHd955p8rKyhyvGho5cqQeeOCBGvdbvny5hgwZonPOOafa8tLSUt1777369NNP9f333ysrK0uDBw/Weeedp379+jXyYQGeYxgGwQIAbub0NSxDhw5VQUGBZs6cqdzcXF1yySXasmWL40LcQ4cOKSCgegft3btXH330kd55550a27Nardq1a5defPFFFRUVKT4+XjfccIMeeeQRrlOBTygqKnK819B/XpAOAHANi2EYhtlDNFVJSYkiIyNVXFzM26LD4/bs2aMLLrhArVq10i+//GL2OADgM5x5/uazhIAm4nQQALgfwQI0EcECAO5HsABNRLAAgPsRLEATESwA4H4EC9BEBAsAuB/BAjQRwQIA7kewAE1EsACA+xEsQBMRLADgfgQL0ARnzpxRQUGBJIIFANyJYAGaoKCgQIZhKCAgQFFRUWaPAwB+i2ABmqDqdFB0dLSsVqvJ0wCA/yJYgCbg+hUA8AyCBWgCggUAPINgAZqgKlji4uJMngQA/BvBAjQBR1gAwDMIFqAJCBYA8AyCBWgCggUAPINgAZqAYAEAzyBYgCYgWADAMwgWoJFOnDihkpISSQQLALgbwQI0Ul5eniQpNDRU4eHhJk8DAP6NYAEa6bengywWi8nTAIB/I1iARuL6FQDwHIIFaCSCBQA8h2ABGolgAQDPIViARiJYAMBzAs0eAL5j165dmjRpkn766SezR/EKVa8SIlgAwP0IFjTITz/9pIEDB+rIkSNmj+J1Lr30UrNHAAC/R7DgrE6ePKnBgwfryJEjSkpK0rJly2S1Ws0eyyvExsaqQ4cOZo8BAH6PYEG9KisrNWrUKH322Wdq06aNNm7cqPPOO8/ssQAAzQwX3aJeDz/8sNavX6+goCBt2LCBWAEAmIJgQZ3WrFmjRx55RJK0ZMkSXXPNNSZPBABorggW1Grbtm0aO3asJOnee+91/BkAADMQLKjhhx9+0JAhQ1RRUaGbbrpJc+fONXskAEAzR7CgmuPHj2vQoEHKz89X9+7dtXr1al4RBAAwHcECB7vdrmHDhmn37t2KjY3Vm2++qZYtW5o9FgAABAv+7d5779WmTZsUEhKiv//970pISDB7JAAAJBEs+H9Lly7VggULJEkvvviikpOTTZ4IAIB/I1ig999/X5MmTZIkzZ49W7fccovJEwEAUB3B0sx9++23+q//+i+dOXNGw4YN04wZM8weCQCAGgiWZuznn3/WoEGDVFRUpCuuuEIrVqyQxWIxeywAAGogWJqp06dP609/+pP27dun9u3b6/XXX1dISIjZYwEAUCuCpRkyDEOTJ0/WBx98oJYtW2rjxo2KiYkxeywAAOpEsDRDmZmZWrp0qSwWi9auXatu3bqZPRIAAPUiWJqZjRs36u6775YkzZs3T4MGDTJ5IgAAzo5gaUZ27dqlYcOGyTAMTZgwQdOmTTN7JAAAGoRgaSby8vKUlpam0tJS/f73v9eiRYt4RRAAwGcQLM1AeXm5hgwZokOHDqlz585av369goKCzB4LAIAGI1j8nGEYGjt2rD799FO1bt1aGzduVJs2bcweCwAApxAsfu7RRx/V2rVrFRgYqNdee01dunQxeyQAAJxGsPixV199VTNnzpQkPf/887r22mtNnggAgMYhWPxUdna2Ro0aJUnKyMjQhAkTTJ4IAIDGI1j80OHDh3XTTTepvLxcgwYN0lNPPWX2SAAANAnB4mdOnz6tP/zhD8rLy1O3bt20Zs0aWa1Ws8cCAKBJCBY/89RTTyknJ0dt2rTRm2++qfDwcLNHAgCgyQgWP/L1119rzpw5kqSFCxfq3HPPNXkiAABcg2DxE3a7XWPHjtWpU6c0aNAgDR8+3OyRAABwGYLFTyxcuFDbt29XRESElixZwtvuAwD8CsHiB/bv36/p06dL+vUTmNu1a2fyRAAAuBbB4uMqKys1YcIEnTx5Utddd53GjRtn9kgAALgcweLjXnjhBW3dulVhYWFaunQpp4IAAH6JYPFhhw8f1n333SdJmjt3rjp06GDyRAAAuAfB4qMMw9DEiRN1/PhxXXnllZoyZYrZIwEA4DYEi4/661//qrfeeks2m03Lly9XQAD/KQEA/qtRz3KLFi1SYmKiQkJClJKSouzs7DrX7du3rywWS43bwIEDHesYhqGZM2cqLi5OoaGhSk1N1b59+xozWrOQm5uradOmSZIefvhhde3a1dyBAABwM6eD5ZVXXlFGRoZmzZqlHTt2qHv37urXr5/y8/NrXX/Dhg366aefHLfdu3fLarXq5ptvdqzz1FNPaeHChVqyZIm2b9+uFi1aqF+/fiovL2/8I/NjkydP1i+//KJLL71U99xzj9njAADgfoaTkpOTjcmTJzu+ttvtRnx8vDF37twG3X/BggVGeHi4UVpaahiGYVRWVhqxsbHG008/7VinqKjIsNlsxtq1axu0zeLiYkOSUVxc7MQj8U3r1683JBmBgYHGzp07zR4HAIBGc+b526kjLKdOnVJOTo5SU1MdywICApSamqpt27Y1aBvLly/XrbfeqhYtWkiSDh48qNzc3GrbjIyMVEpKSp3brKioUElJSbVbc3Ds2DFNnjxZkvTAAw+oe/fuJk8EAIBnOBUshYWFstvtiomJqbY8JiZGubm5Z71/dna2du/erfHjxzuWVd3PmW3OnTtXkZGRjltCQoIzD8NnTZs2Tfn5+brwwgsd72wLAEBz4NGXlixfvlzdunVTcnJyk7bzwAMPqLi42HE7fPiwiyb0Xps2bdLLL7+sgIAArVixQjabzeyRAADwGKeCJSoqSlarVXl5edWW5+XlKTY2tt77lpWVad26dTXeOr7qfs5s02azKSIiotrNnxUXF2vixImSpIyMjCYHHwAAvsapYAkODlbPnj2VlZXlWFZZWamsrCz16tWr3vuuX79eFRUVuv3226st79Chg2JjY6tts6SkRNu3bz/rNpuL++67Tz/++KPOO+88zZ492+xxAADwuEBn75CRkaFRo0bpsssuU3JysjIzM1VWVqYxY8ZIkkaOHKl27dpp7ty51e63fPlyDRkyROecc0615RaLRdOmTdOjjz6qzp07q0OHDpoxY4bi4+M1ZMiQxj8yP/H+++/rhRdekPTrPgwLCzN5IgAAPM/pYBk6dKgKCgo0c+ZM5ebm6pJLLtGWLVscF80eOnSoxruu7t27Vx999JHeeeedWrd53333qaysTOnp6SoqKlKfPn20ZcsWhYSENOIh+Y+ysjLHBcqTJk3S1VdfbfJEAACYw2IYhmH2EE1VUlKiyMhIFRcX+9X1LNOmTdOzzz6r9u3ba/fu3QoPDzd7JAAAXMaZ528+gMZLffLJJ1q4cKEk6YUXXiBWAADNGsHihcrLyzV27FgZhqHRo0erX79+Zo8EAICpCBYvNGfOHO3du1exsbGaP3++2eMAAGA6gsXL7NixQ0899ZQkafHixWrdurXJEwEAYD6CxYucPn1aY8eOld1u1y233MLLugEA+H8Eixd58skn9a9//UvnnHOOnnvuObPHAQDAaxAsXuKrr77SnDlzJEkLFy5UdHS0yRMBAOA9CBYvYLfbNXbsWJ0+fVppaWkaNmyY2SMBAOBVCBYvkJmZqezsbEVERGjx4sWyWCxmjwQAgFchWEy2b98+PfTQQ5KkefPmqV27diZPBACA9yFYTFRZWanx48ervLxc1113ncaNG2f2SAAAeCWCxUT/8z//ow8//FBhYWFaunQpp4IAAKgDwWKSQ4cO6b777pMkPfHEE+rQoYPJEwEA4L0IFhMYhqH09HSVlpaqd+/emjx5stkjAQDg1QgWE7z00kt6++23ZbPZtHz5cgUE8J8BAID68EzpYT/99JOmTZsmSZo9e7aSkpLMHQgAAB9AsHiQYRiaNGmSioqK1LNnT919991mjwQAgE8gWDxo/fr1ev311xUYGKgVK1YoMDDQ7JEAAPAJBIuHFBYWasqUKZKkBx98UBdffLHJEwEA4DsIFg+ZNm2aCgoKdNFFF2n69OlmjwMAgE8hWDxg48aNWr16tQICArRixQoFBwebPRIAAD6FYHGzoqIiTZw4UZKUkZGhyy+/3OSJAADwPQSLm9177706evSoOnfurDlz5pg9DgAAPolgcaP33ntPy5YtkyQtW7ZMoaGhJk8EAIBvIljcpLS0VBMmTJAkTZ48WVdffbXJEwEA4LsIFjeZPn26vv/+e7Vv315z5841exwAAHwaweIGH3/8sZ577jlJ0tKlSxUeHm7yRAAA+DaCxcXKy8s1btw4GYahMWPG6IYbbjB7JAAAfB7B4mKzZ8/W3r17FRsbq3nz5pk9DgAAfoFgcaGcnBw9/fTTkqQlS5aodevWJk8EAIB/IFhc5NSpUxo7dqzsdruGDh2qwYMHmz0SAAB+g2BxkSeeeEK7du1SVFSU44JbAADgGgSLC+zevVuPPvqoJGnhwoVq27atyRMBAOBfCJYmOnPmjMaOHavTp08rLS1Nt956q9kjAQDgdwiWJsrMzNRnn32myMhILV68WBaLxeyRAADwOwRLE3z77beaMWOGJGnevHlq166dyRMBAOCfCJZGqqys1Pjx41VeXq7U1FSNHTvW7JEAAPBbBEsjLVmyRP/85z/VokULLV26lFNBAAC4EcHSCD/88IP+8pe/SPr15cyJiYnmDgQAgJ8jWJxkGIbS09NVWlqqPn36aNKkSWaPBACA3yNYnLRq1Sq98847stlsWrZsmQIC2IUAALgbz7ZOOHr0qDIyMiRJc+bMUVJSkskTAQDQPBAsDWQYhiZNmqSioiL17NnTES4AAMD9CJYGevXVV/X3v/9dQUFBWrlypQIDA80eCQCAZoNgaYCCggL993//tyTpwQcfVLdu3UyeCACA5oVgaYCpU6eqoKBAF110kR588EGzxwEAoNkhWM7ijTfe0Nq1axUQEKAVK1YoODjY7JEAAGh2CJZ6FBUV6Y477pAk3X333br88stNnggAgOaJK0frUVhYqOjoaLVs2VKzZ882exwAAJotgqUe5513nj777DMdOXJEoaGhZo8DAECzxSmhswgKClKHDh3MHgMAgGaNYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF6PYAEAAF4v0OwBXMEwDElSSUmJyZMAAICGqnrernoer49fBMvx48clSQkJCSZPAgAAnHX8+HFFRkbWu47FaEjWeLnKykodPXpU4eHhslgsjd5OSUmJEhISdPjwYUVERLhwQtSG/e057GvPYV97Dvvac9y1rw3D0PHjxxUfH6+AgPqvUvGLIywBAQH63e9+57LtRURE8Jffg9jfnsO+9hz2teewrz3HHfv6bEdWqnDRLQAA8HoECwAA8HoEy2/YbDbNmjVLNpvN7FGaBfa357CvPYd97Tnsa8/xhn3tFxfdAgAA/8YRFgAA4PUIFgAA4PUIFgAA4PUIFgAA4PWaXbAsWrRIiYmJCgkJUUpKirKzs+tdf/369eratatCQkLUrVs3bd682UOT+j5n9vXSpUt11VVXqXXr1mrdurVSU1PP+t8G1Tn7d7vKunXrZLFYNGTIEPcO6Eec3ddFRUWaPHmy4uLiZLPZ1KVLF36XNJCz+zozM1NJSUkKDQ1VQkKC7rrrLpWXl3toWt/04YcfKi0tTfHx8bJYLHr99dfPep+tW7fq0ksvlc1m03nnnadVq1a5fU4Zzci6deuM4OBgY8WKFcZXX31lTJgwwWjVqpWRl5dX6/off/yxYbVajaeeesr4+uuvjYceesgICgoyvvzySw9P7nuc3dfDhw83Fi1aZHzxxRfGnj17jNGjRxuRkZHGkSNHPDy5b3J2f1c5ePCg0a5dO+Oqq64yBg8e7JlhfZyz+7qiosK47LLLjAEDBhgfffSRcfDgQWPr1q3Gzp07PTy573F2X69evdqw2WzG6tWrjYMHDxpvv/22ERcXZ9x1110enty3bN682Zg+fbqxYcMGQ5Lxt7/9rd71Dxw4YISFhRkZGRnG119/bTz33HOG1Wo1tmzZ4tY5m1WwJCcnG5MnT3Z8bbfbjfj4eGPu3Lm1rn/LLbcYAwcOrLYsJSXFmDhxolvn9AfO7uv/dObMGSM8PNx48cUX3TWiX2nM/j5z5oxx5ZVXGsuWLTNGjRpFsDSQs/t68eLFRseOHY1Tp055akS/4ey+njx5svH73/++2rKMjAyjd+/ebp3TnzQkWO677z7jwgsvrLZs6NChRr9+/dw4mWE0m1NCp06dUk5OjlJTUx3LAgIClJqaqm3bttV6n23btlVbX5L69etX5/r4VWP29X86ceKETp8+rTZt2rhrTL/R2P09Z84cRUdHa9y4cZ4Y0y80Zl+/8cYb6tWrlyZPnqyYmBhddNFFevzxx2W32z01tk9qzL6+8sorlZOT4zhtdODAAW3evFkDBgzwyMzNhVnPjX7x4YcNUVhYKLvdrpiYmGrLY2Ji9M0339R6n9zc3FrXz83Ndduc/qAx+/o//eUvf1F8fHyN/ylQU2P290cffaTly5dr586dHpjQfzRmXx84cEDvv/++brvtNm3evFn79+/XpEmTdPr0ac2aNcsTY/ukxuzr4cOHq7CwUH369JFhGDpz5ozuuOMOPfjgg54Yudmo67mxpKREJ0+eVGhoqFt+brM5wgLf8cQTT2jdunX629/+ppCQELPH8TvHjx/XiBEjtHTpUkVFRZk9jt+rrKxUdHS0XnjhBfXs2VNDhw7V9OnTtWTJErNH8ztbt27V448/rueff147duzQhg0btGnTJj3yyCNmjwYXaDZHWKKiomS1WpWXl1dteV5enmJjY2u9T2xsrFPr41eN2ddVnnnmGT3xxBN67733dPHFF7tzTL/h7P7+7rvv9P333ystLc2xrLKyUpIUGBiovXv3qlOnTu4d2kc15u92XFycgoKCZLVaHcvOP/985ebm6tSpUwoODnbrzL6qMft6xowZGjFihMaPHy9J6tatm8rKypSenq7p06crIIB/o7tCXc+NERERbju6IjWjIyzBwcHq2bOnsrKyHMsqKyuVlZWlXr161XqfXr16VVtfkt59990618evGrOvJempp57SI488oi1btuiyyy7zxKh+wdn93bVrV3355ZfauXOn43bTTTfp2muv1c6dO5WQkODJ8X1KY/5u9+7dW/v373dEoSR9++23iouLI1bq0Zh9feLEiRpRUhWKBh+b5zKmPTe69ZJeL7Nu3TrDZrMZq1atMr7++msjPT3daNWqlZGbm2sYhmGMGDHCuP/++x3rf/zxx0ZgYKDxzDPPGHv27DFmzZrFy5obyNl9/cQTTxjBwcHG//7v/xo//fST43b8+HGzHoJPcXZ//ydeJdRwzu7rQ4cOGeHh4caUKVOMvXv3Ghs3bjSio6ONRx991KyH4DOc3dezZs0ywsPDjbVr1xoHDhww3nnnHaNTp07GLbfcYtZD8AnHjx83vvjiC+OLL74wJBnz5883vvjiC+OHH34wDMMw7r//fmPEiBGO9ate1nzvvfcae/bsMRYtWsTLmt3hueeeM9q3b28EBwcbycnJxqeffur43jXXXGOMGjWq2vqvvvqq0aVLFyM4ONi48MILjU2bNnl4Yt/lzL4+99xzDUk1brNmzfL84D7K2b/bv0WwOMfZff3JJ58YKSkphs1mMzp27Gg89thjxpkzZzw8tW9yZl+fPn3aePjhh41OnToZISEhRkJCgjFp0iTjl19+8fzgPuSDDz6o9fdv1b4dNWqUcc0119S4zyWXXGIEBwcbHTt2NFauXOn2OS2GwXEyAADg3ZrNNSwAAMB3ESwAAMDrESwAAMDrESwAAMDrESwAAMDrESwAAMDrESwAAMDrESwAAMDrESwATNW3b19Nmzatzu8nJiYqMzPTY/MAqO7DDz9UWlqa4uPjZbFY9Prrrzu9DcMw9Mwzz6hLly6y2Wxq166dHnvsMae20Ww+rRmAb/rss8/UokULs8cAmq2ysjJ1795dY8eO1R//+MdGbWPq1Kl655139Mwzz6hbt276+eef9fPPPzu1DYIFgFdr27at2SMAzdqNN96oG2+8sc7vV1RUaPr06Vq7dq2Kiop00UUX6cknn1Tfvn0lSXv27NHixYu1e/duJSUlSZI6dOjg9BycEgJgujNnzmjKlCmKjIxUVFSUZsyYoaqPOfvPU0IWi0XLli3TH/7wB4WFhalz58564403TJocwJQpU7Rt2zatW7dOu3bt0s0336z+/ftr3759kqQ333xTHTt21MaNG9WhQwclJiZq/PjxTh9hIVgAmO7FF19UYGCgsrOz9eyzz2r+/PlatmxZnevPnj1bt9xyi3bt2qUBAwbotttuc/qXH4CmO3TokFauXKn169frqquuUqdOnXTPPfeoT58+WrlypSTpwIED+uGHH7R+/Xq99NJLWrVqlXJycvSnP/3JqZ/FKSEApktISNCCBQtksViUlJSkL7/8UgsWLNCECRNqXX/06NEaNmyYJOnxxx/XwoULlZ2drf79+3tybKDZ+/LLL2W329WlS5dqyysqKnTOOedIkiorK1VRUaGXXnrJsd7y5cvVs2dP7d2713Ga6GwIFgCmu+KKK2SxWBxf9+rVS/PmzZPdbq91/Ysvvtjx5xYtWigiIkL5+flunxNAdaWlpbJarcrJyZHVaq32vZYtW0qS4uLiFBgYWC1qzj//fEm/HqEhWAD4raCgoGpfWywWVVZWmjQN0Hz16NFDdrtd+fn5uuqqq2pdp3fv3jpz5oy+++47derUSZL07bffSpLOPffcBv8sggWA6bZv317t608//VSdO3eu8S82AJ5XWlqq/fv3O74+ePCgdu7cqTZt2qhLly667bbbNHLkSM2bN089evRQQUGBsrKydPHFF2vgwIFKTU3VpZdeqrFjxyozM1OVlZWaPHmyrr/++hqnkurDRbcATHfo0CFlZGRo7969Wrt2rZ577jlNnTrV7LEASPr888/Vo0cP9ejRQ5KUkZGhHj16aObMmZKklStXauTIkbr77ruVlJSkIUOG6LPPPlP79u0lSQEBAXrzzTcVFRWlq6++WgMHDtT555+vdevWOTUHR1gAmG7kyJE6efKkkpOTZbVaNXXqVKWnp5s9FgD9+m7UVW8zUJugoCDNnj1bs2fPrnOd+Ph4vfbaa02aw2LUNwUAAIAX4JQQAADwegQLAADwegQLAADwegQLAADwegQLAADwegQLAADwegQLAADwegQLAADwegQLAADwegQLAADwegQLAADwev8HHyArgWXFevIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQz0lEQVR4nO3dd1QUZ+M98Du7VJFiB+zdWMLSwQYq9kiwYUMs2DHRYNQYe6KSqBF7x5aoWILG2AExNqSvCRqxxNgB0QgC0pb5/fG+4ffytYECs7vczzlzTnb2mdk7E+PczLNFEEVRBBEREZGGk0kdgIiIiKg0sNQQERGRVmCpISIiIq3AUkNERERagaWGiIiItAJLDREREWkFlhoiIiLSCiw1REREpBVYaoiIiEgrsNQQERGRVmCpISK18scff2DAgAGoX78+DAwMULt2bXTt2hVr1qwpHNOgQQMIgvDapUePHgAAURTRoUMH1KhRA0+fPn3ldSZMmABdXV0olcryOjQiKmMCf/uJiNTFpUuX0KlTJ9SrVw8jRoyAubk57t+/j8uXL+P27du4desWgP+UmipVqmDatGmv7MPS0hKdO3cGAFy7dg0KhQLDhg3D9u3bC8dERESgXbt28PPzw/Lly8vn4IiozLHUEJHa6N27N6Kjo3Hjxg2YmZkVeS4lJQU1a9YE8J9S07p1axw9evSd+5w9ezaWLFmCs2fPwsXFBXl5ebCxsUF6ejquXbsGIyOjsjgUIpIAp5+ISG3cvn0brVq1eqXQACgsNCU1d+5cNG7cGOPHj0dubi5++OEHJCQkYO3atSw0RFpGR+oARET/ql+/PiIiIpCQkIDWrVu/dWxeXh5SU1NfWW9kZARDQ8PCxwYGBli/fj26d++OSZMmYc+ePejbty/69OlT6vmJSFqcfiIitRESEoKePXsCABwcHNChQwd06dIFnTp1gq6ubuG4Bg0a4O7du6/dh7+/P7766qtX1g8dOhR79+6FsbExrl27hjp16pTNQRCRZHinhojURteuXREREQF/f3+cOnUKERERWLp0KWrUqIGtW7fC3d29cKyjoyMWLVr0yj6aNm362n1Xr14dANCyZUsWGiItxTs1RKSWcnNzceXKFRw6dAgBAQFQqVRQKpVo2bJlid4oDAAxMTFwdHREy5YtkZCQgB9//BFeXl5lfAREVN74RmEiUkt6enqwt7fHkiVLsGHDBuTl5eHAgQMl3o9KpcK4ceNgaWmJixcvwtHREdOmTcPz589LPzQRSYqlhojUnp2dHQDg8ePHJd529erViI+Px5o1a2BiYoKNGzfi6dOnr33fDRFpNpYaIlIb4eHheN2M+PHjxwEAzZs3L9H+7t+/j3nz5sHd3R0eHh4AAIVCgc8//xxbtmxBZGTkB2cmIvXB99QQkdpo3bo1srKy0LdvX7Ro0QK5ubm4dOkS9u3bh7p16yI+Ph5mZmZv/UbhypUrFxYYDw8PhIaG4tq1a6hXr17hmBcvXuCjjz5CjRo1EBMTA7lcXl6HSERliKWGiNTGyZMnceDAAVy6dAkPHjxAbm4u6tWrh549e2LOnDlFvlH4TR/prl+/Pv7++28cPnwYffv2xfLly19bfn7++WcMGDAAK1aswBdffFGmx0VE5YOlhoiIiLQC31NDREREWoGlhoiIiLQCSw0RERFpBZYaIiIi0gosNURERKQVWGqIiIhIK1SYX+kuKCjAo0ePYGxsDEEQpI5DRERExSCKIl68eAFLS0vIZG+/F1NhSs2jR49Qt25dqWMQERHRe7h//z7q1Knz1jEVptQYGxsD+M9JMTExkTgNERERFUd6ejrq1q1beB1/mwpTav6dcjIxMWGpISIi0jDFeesI3yhMREREWoGlhoiIiLQCSw0RERFphQrznhoiIiJ1VFBQgNzcXKljSEZXVxdyubxU9sVSQ0REJJHc3FzcuXMHBQUFUkeRlJmZGczNzT/4e+RYaoiIiCQgiiIeP34MuVyOunXrvvOL5bSRKIrIyspCSkoKAMDCwuKD9sdSQ0REJIH8/HxkZWXB0tISlSpVkjqOZAwNDQEAKSkpqFmz5gdNRVW8WkhERKQGVCoVAEBPT0/iJNL7t9Tl5eV90H5YaoiIiCTE3yMsvXPAUkNERERagaWGiIiIylSDBg2wcuXKMn8dlhoiIiLSCiw1peD06dPIzs6WOgYREVGFxlLzgc6fP4+ePXuibdu2uHXrltRxiIiIypSrqysmT56MyZMnw9TUFNWrV8fcuXMhiiKA/3w0u0+fPjA0NETDhg2xe/fucsvG76n5QNnZ2ahSpQri4+NhY2ODzZs3Y/DgwVLHIiIiDfPvF9FJoVKlSiX6BNLOnTvh4+ODqKgoxMTEYNy4cahXrx7Gjh2LkSNH4tGjRwgPD4euri4+//zzwi/XK2ssNR+oa9euUCqVGDp0KM6fP48hQ4YgPDwcK1euLPxCISIionfJyspC5cqVJXntjIwMGBkZFXt83bp1ERAQAEEQ0Lx5c/zxxx8ICAiAi4sLTpw4gaioKNjb2wMAAgMD8dFHH5VV9CI4/VQK6tSpgzNnzmD27NkQBAGbN2+Go6Mjrl+/LnU0IiKiUufk5FTkzo6zszNu3ryJP//8Ezo6OrC1tS18rkWLFjAzMyuXXLxTU0p0dHSwaNEiuLi4wMvLC3/88Qfs7OywYcMGDB8+XOp4RESk5ipVqoSMjAzJXlsbsNSUsn+no4YNG4bw8HB4e3sjPDwca9asKdGtPSIiqlgEQdCY60RkZGSRx5cvX0bTpk3RokUL5OfnIzY2tnD6KTExEc+fPy+XXJx+KgMWFhYICQnBggULIAgCtm/fDgcHB1y9elXqaERERB/s3r178PPzQ2JiIvbu3Ys1a9ZgypQpaN68OXr06IHx48cjMjISsbGxGDNmTLm9x/S9Ss26devQoEEDGBgYwNHREVFRUW8c6+rqCkEQXll69+5dOGbBggVo0aIFjIyMUKVKFbi5ub3SAp89e4Zhw4bBxMQEZmZm8PHxkew2XXHI5XLMnz8fYWFhMDc3x7Vr12Bvb4/t27cXfuyNiIhIE3l7e+Ply5dwcHCAr68vpkyZgnHjxgEAtm/fDktLS7i4uKBfv34YN24catasWT7BxBIKCgoS9fT0xG3btolXr14Vx44dK5qZmYnJycmvHf/06VPx8ePHhUtCQoIol8vF7du3F47ZvXu3GBISIt6+fVtMSEgQfXx8RBMTEzElJaVwTI8ePUQrKyvx8uXL4vnz58UmTZqIQ4YMKXbutLQ0EYCYlpZW0kP+YElJSWLXrl1FACIA0cvLS3zx4kW55yAiIvXx8uVL8dq1a+LLly+ljlIiLi4u4pQpU0p1n287FyW5fpe41Dg4OIi+vr6Fj1UqlWhpaSn6+/sXa/uAgADR2NhYzMjIeOOYfw8gNDRUFEVRvHbtmghAjI6OLhxz4sQJURAE8eHDh8V6XSlLjSj+5zwtXrxYlMlkIgCxefPm4pUrVyTJQkRE0mOp+f9Kq9SUaPopNzcXsbGxcHNzK1wnk8ng5uaGiIiIYu0jMDAQgwcPfuOboXJzc7F582aYmprCysoKABAREQEzMzPY2dkVjnNzc4NMJntlmkpdyWQyfP311zh79ixq166NxMREODg4YPPmzZyOIiIiKgUlKjWpqalQqVSoVatWkfW1atVCUlLSO7ePiopCQkICxowZ88pzR48eReXKlWFgYICAgACEhISgevXqAICkpKRX5uN0dHRQtWrVN75uTk4O0tPTiyzqoEOHDlAqlejZsydycnIwfvx4DB06VG3yERERvc3Zs2fL5Re330e5fvopMDAQbdq0gYODwyvPderUCUqlEpcuXUKPHj3g6en5QV+r7O/vD1NT08Klbt26HxK9VFWvXh1Hjx7F0qVLIZfLERQUBFtbW8THx0sdjYiISGOVqNRUr14dcrkcycnJRdYnJyfD3Nz8rdtmZmYiKCgIPj4+r33eyMgITZo0gZOTEwIDA6Gjo4PAwEAAgLm5+SsFJz8/H8+ePXvj686aNQtpaWmFy/3794t7mOVCJpNh+vTpOH/+POrVq4dbt27ByckJ69at43QUEVEFwr/zS+8clKjU6OnpwdbWFmFhYYXrCgoKEBYWBmdn57due+DAAeTk5MDLy6tYr1VQUICcnBwA//n65efPnyM2Nrbw+TNnzqCgoACOjo6v3V5fXx8mJiZFFnXk7OyM+Ph4uLu7Izc3F5MnT8bAgQPL7YuKiIhIGnK5HMB/3kta0f37Q566uroftB9BLGE92rdvH0aMGIFNmzbBwcEBK1euxP79+3H9+nXUqlUL3t7eqF27Nvz9/Yts16FDB9SuXRtBQUFF1mdmZmLx4sVwd3eHhYUFUlNTsW7dOuzZswexsbFo1aoVAKBnz55ITk7Gxo0bkZeXh1GjRsHOzg579uwpVu709HSYmpoiLS1NLQuOKIpYtWoVZsyYgby8PDRs2BD79u0r/EZGIiLSLqIo4t69e8jLy4OlpSVksor3fbjif3+ZPCUlBWZmZrCwsHhlTEmu3yX+mYRBgwbhyZMnmDdvHpKSkqBQKHDy5MnCNw/fu3fvlX8xiYmJuHDhAk6fPv3K/uRyOa5fv46dO3ciNTUV1apVg729Pc6fP19YaABg9+7dmDx5Mrp06QKZTIb+/ftj9erVJY2vtgRBwNSpU9GuXTt4enrizp07aNeuHZYuXYopU6aU6CfhiYhI/QmCAAsLC9y5cwd3796VOo6kzMzM3vk2luIo8Z0aTaXud2r+1/Pnz+Hj44Pg4GAAgLu7O7Zv346qVatKnIyIiEpbQUFBhZ6C0tXVLZyKe52SXL9ZatSUKIpYv349/Pz8kJubi3r16iEoKOid710iIiLSJiW5fle8CTwNIQgCfH19ERERgcaNG+PevXvo2LEjli1bhoKCAqnjERERqR2WGjVnY2ODuLg4DBo0CPn5+ZgxYwb69OmD1NRUqaMRERGpFZYaDWBiYoK9e/di06ZN0NfXx/Hjx6FQKHD+/HmpoxEREakNlhoNIQgCxo0bh6ioKDRv3hwPHz5Ep06dsGTJEk5HERERgaVG43z88ceIiYmBl5cXVCoVZs+ejR49enzQT0oQERFpA5YaDVS5cmXs2rUL27Ztg6GhIUJCQmBlZYXw8HCpoxEREUmGpUZDCYKAUaNGITo6Gi1btkRSUhLc3NywcOFCqFQqqeMRERGVO5YaDdeqVStERUVh1KhRKCgowIIFC9C1a1c8fvxY6mhERETliqVGCxgZGWHbtm3YtWsXjIyMEB4eDoVCgZCQEKmjERERlRuWGi0yfPhwxMTEoE2bNkhJSUH37t0xZ84c5OfnSx2NiIiozLHUaJkWLVogMjIS48ePhyiKWLx4MTp37owHDx5IHY2IiKhMsdRoIUNDQ2zcuBF79+6FsbExzp8/D4VCgRMnTkgdjYiIqMyw1GixwYMHIzY2FtbW1nj69Cl69eqFmTNnIi8vT+poREREpY6lRss1bdoUly5dgq+vLwBg6dKlcHFxwb179yRORkREVLpYaioAAwMDrF27FgcPHoSpqSkiIiKgUChw5MgRqaMRERGVGpaaCqR///6Ii4uDvb09/vnnH3z66afw8/NDbm6u1NGIiIg+GEtNBdOoUSNcuHABU6dOBQAEBASgffv2uHPnjrTBiIiIPhBLTQWkp6eHgIAAHD58GGZmZoiOjoa1tTWCg4OljkZERPTeWGoqsE8//RRKpRJOTk5IS0tD//798dlnnyEnJ0fqaERERCXGUlPB1a9fH+fOncOMGTMAAGvXrkXbtm1x69YtiZMRERGVDEsNQVdXF99//z2OHTuGatWqIS4uDjY2Nti3b5/U0YiIiIqNpYYK9erVC0qlEu3bt8eLFy8wePBgTJgwAS9fvpQ6GhER0Tux1FARderUQXh4OL7++msIgoBNmzbByckJiYmJUkcjIiJ6K5YaeoWOjg4WL16MkydPokaNGvj9999ha2uLn376SepoREREb8RSQ2/UrVs3XLlyBa6ursjMzMTw4cPh4+ODrKwsqaMRERG9gqWG3srCwgKhoaGYP38+BEHAtm3b4ODggGvXrkkdjYiIqAiWGnonuVyOBQsWIDQ0FObm5rh69Srs7Oywfft2iKIodTwiIiIALDVUAp07d4ZSqYSbmxtevnyJ0aNHY8SIEcjIyJA6GhEREUsNlUytWrVw6tQpLFq0CDKZDD/++CPs7e3x+++/Sx2NiIgqOJYaKjGZTIbZs2cjPDwclpaWuH79OhwdHbF582ZORxERkWRYaui9dezYEUqlEj179kR2djbGjx+PoUOHIj09XepoRERUAbHU0AepUaMGjh49iu+//x5yuRxBQUGwtbVFfHy81NGIiKiCYamhDyaTyTBjxgycO3cOdevWxa1bt+Dk5IT169dzOoqIiMoNSw2VmrZt20KpVKJPnz7Izc2Fr68vPD09kZaWJnU0IiKqAFhqqFRVrVoVv/zyC1asWAFdXV0cPHgQ1tbWiI6OljoaERFpOZYaKnWCIOCLL77AhQsX0KBBA9y5cwft2rXDqlWrOB1FRERlhqWGyoyDgwPi4+PRr18/5OXlYerUqejbty+ePXsmdTQiItJCLDVUpszMzHDw4EGsWbMGenp6+OWXX2BtbY3Lly9LHY2IiLQMSw2VOUEQMHnyZERERKBx48a4d+8eOnTogGXLlqGgoEDqeEREpCVYaqjc2NjYIC4uDoMGDUJ+fj5mzJgBd3d3pKamSh2NiIi0AEsNlSsTExPs3bsXGzduhL6+Po4dOwaFQoELFy5IHY2IiDQcSw2VO0EQMH78eERGRqJZs2Z4+PAhXF1d4e/vz+koIiJ6byw1JBkrKyvExsbCy8sLKpUKX3/9NXr27ImUlBSpoxERkQZiqSFJVa5cGbt27UJgYCAMDQ1x+vRpKBQKnD17VupoRESkYVhqSHKCIGD06NGIjo7GRx99hMePH6NLly745ptvoFKppI5HREQagqWG1EarVq0QHR2NUaNGoaCgAPPnz0e3bt2QlJQkdTQiItIALDWkVoyMjLBt2zbs2rULRkZGOHPmDKysrBAaGip1NCIiUnMsNaSWhg8fjpiYGLRp0wYpKSno1q0b5s6di/z8fKmjERGRmmKpIbXVokULREZGYty4cRBFEYsWLUKXLl3w8OFDqaMREZEaYqkhtWZoaIhNmzZh7969qFy5Ms6dOweFQoGTJ09KHY2IiNQMSw1phMGDByMuLg4KhQKpqano2bMnvvrqK+Tl5UkdjYiI1ARLDWmMpk2bIiIiAr6+vgCA77//Hq6urrh3757EyYiISB2w1JBGMTAwwNq1a3HgwAGYmJjg0qVLsLa2xq+//ip1NCIikhhLDWmkAQMGID4+HnZ2dnj27Bnc3d0xbdo05ObmSh2NiIgkwlJDGqtRo0a4cOECpk6dCgBYsWIFOnTogDt37kgbjIiIJMFSQxpNX18fAQEBOHz4MMzMzBAVFQVra2scOnRI6mhERFTOWGpIK3z66adQKpVwcnJCWloa+vXrh88//xw5OTlSRyMionLCUkNao379+jh37hymT58OAFizZg3atWuH27dvS5yMiIjKA0sNaRVdXV0sXboUR48eRbVq1RAbGwtra2vs379f6mhERFTGWGpIK/Xu3RtKpRLt27fHixcvMGjQIEycOBEvX76UOhoREZWR9yo169atQ4MGDWBgYABHR0dERUW9cayrqysEQXhl6d27NwAgLy8PM2fORJs2bWBkZARLS0t4e3vj0aNHRfZz48YNfPrpp6hevTpMTEzQvn17hIeHv098qiDq1KmD8PBwzJo1CwCwceNGODk5ITExUeJkRERUFkpcavbt2wc/Pz/Mnz8fcXFxsLKyQvfu3ZGSkvLa8cHBwXj8+HHhkpCQALlcjoEDBwIAsrKyEBcXh7lz5yIuLg7BwcFITEyEu7t7kf188sknyM/Px5kzZxAbGwsrKyt88sknSEpKeo/DpopCR0cHS5YswcmTJ1GjRg38/vvvsLW1xe7du6WORkREpU0sIQcHB9HX17fwsUqlEi0tLUV/f/9ibR8QECAaGxuLGRkZbxwTFRUlAhDv3r0riqIoPnnyRAQgnjt3rnBMenq6CEAMCQkp1uumpaWJAMS0tLRijSft8/DhQ9HV1VUEIAIQfXx8xMzMTKljERHRW5Tk+l2iOzW5ubmIjY2Fm5tb4TqZTAY3NzdEREQUax+BgYEYPHgwjIyM3jgmLS0NgiDAzMwMAFCtWjU0b94cu3btQmZmJvLz87Fp0ybUrFkTtra2r91HTk4O0tPTiyxUsVlaWiI0NBTz5s2DIAgIDAyEg4MDrl27JnU0IiIqBSUqNampqVCpVKhVq1aR9bVq1SrWNFBUVBQSEhIwZsyYN47Jzs7GzJkzMWTIEJiYmAAABEFAaGgo4uPjYWxsDAMDA6xYsQInT55ElSpVXrsff39/mJqaFi5169YtwZGStpLL5Vi4cCFCQ0Nhbm6Oq1evwt7eHjt27JA6GhERfaBy/fRTYGAg2rRpAwcHh9c+n5eXB09PT4iiiA0bNhSuF0URvr6+qFmzJs6fP4+oqCh4eHigT58+ePz48Wv3NWvWLKSlpRUu9+/fL5NjIs3UuXNnKJVKuLm5ISsrC6NGjcKIESOQkZEhdTQiInpPJSo11atXh1wuR3JycpH1ycnJMDc3f+u2mZmZCAoKgo+Pz2uf/7fQ3L17FyEhIYV3aQDgzJkzOHr0KIKCgtCuXTvY2Nhg/fr1MDQ0xM6dO1+7P319fZiYmBRZiP5XrVq1cPLkSSxatAgymQy7du2Cvb09/vjjD6mjERHReyhRqdHT04OtrS3CwsIK1xUUFCAsLAzOzs5v3fbAgQPIycmBl5fXK8/9W2hu3ryJ0NBQVKtWrcjzWVlZ/wkrKxpXJpOhoKCgJIdAVIRcLsfs2bMRHh4OS0tLXL9+HQ4ODti6dStEUZQ6HhERlUCJp5/8/PywZcsW7Ny5E3/++ScmTpyIzMxMjBo1CgDg7e1d+L0g/yswMBAeHh6vFJa8vDwMGDAAMTEx2L17N1QqFZKSkpCUlITc3FwAgLOzM6pUqYIRI0bgypUruHHjBqZPn447d+4Uft8N0Yfo2LEjlEolevTogezsbIwdOxbDhg3DixcvpI5GRETF9T4fr1qzZo1Yr149UU9PT3RwcBAvX75c+JyLi4s4YsSIIuOvX78uAhBPnz79yr7u3LlT+BHb/7uEh4cXjouOjha7desmVq1aVTQ2NhadnJzE48ePFzszP9JNxaFSqcTvvvtOlMvlIgCxSZMmYlxcnNSxiIgqrJJcvwVRrBj32NPT02Fqaoq0tDS+v4be6dKlSxg8eDDu378PfX19rFixAhMnToQgCFJHIyKqUEpy/eZvPxG9Rtu2bREfH48+ffogJycHvr6+8PT0RFpamtTRiIjoDVhqiN6gWrVq+OWXX/DDDz9AR0cHBw8ehI2NDWJiYqSORkREr8FSQ/QWgiDAz88PFy9eRIMGDfDXX3+hbdu2WLVqFT8dRUSkZlhqiIrBwcEB8fHx6Nu3L/Ly8jB16lT069cP//zzj9TRiIjov1hqiIrJzMwMP//8M9asWQM9PT0cPnwY1tbWiIyMlDoaERGBpYaoRARBwOTJk3Hp0iU0btwYd+/eRfv27fHDDz/wiyCJiCTGUkP0HmxtbREbGwtPT0/k5+fjyy+/hLu7O54+fSp1NCKiCoulhug9mZqaIigoCBs2bIC+vj6OHTsGhUKBixcvSh2NiKhCYqkh+gCCIGDChAmIjIxEs2bN8ODBA7i4uMDf35/TUURE5YylhqgUWFlZISYmBsOGDYNKpcLXX3+NXr16ISUlRepoREQVBksNUSkxNjbGjz/+iK1bt8LQ0BCnTp2CQqHAb7/9JnU0IqIKgaWGqBQJggAfHx9ERUXho48+wuPHj9G5c2d88803UKlUUscjItJqLDVEZaB169aIjo7GyJEjUVBQgPnz56N79+5ISkqSOhoRkdZiqSEqI0ZGRti+fTt27tyJSpUqISwsDAqFAmFhYVJHIyLSSiw1RGXM29sbsbGxaN26NZKTk9G1a1fMmzcP+fn5UkcjItIqLDVE5aBFixaIiorC2LFjIYoivv32W3Tp0gWPHj2SOhoRkdZgqSEqJ4aGhti8eTP27NmDypUr49y5c7CyssLJkyeljkZEpBVYaojK2ZAhQxAbGwuFQoHU1FT07NkTs2bN4nQUEdEHYqkhkkCzZs0QERGBSZMmAQC+++47uLq64v79+xInIyLSXCw1RBIxMDDAunXrsH//fpiYmODixYtQKBQ4evSo1NGIiDQSSw2RxAYOHIj4+HjY2dnh2bNn6NOnD6ZNm4bc3FypoxERaRSWGiI10KhRI1y4cAFTpkwBAKxYsQIdO3bE33//LW0wIiINwlJDpCb09fWxcuVKHDp0CGZmZoiMjIS1tTUOHz4sdTQiIo3AUkOkZjw8PKBUKuHo6Ijnz5+jb9++mDJlCnJycqSORkSk1lhqiNRQ/fr1cf78eXz55ZcAgNWrV6Ndu3a4ffu2xMmIiNQXSw2RmtLV1cWyZctw9OhRVK1aFbGxsbCxscGBAwekjkZEpJZYaojUXO/evaFUKtGuXTukp6fD09MTkyZNQnZ2ttTRiIjUCksNkQaoW7cuzp49i1mzZgEANmzYACcnJ9y4cUPiZERE6oOlhkhD6OjoYMmSJTh58iRq1KiBK1euwNbWFnv27JE6GhGRWmCpIdIw3bt3h1KphIuLCzIyMjBs2DCMHTsWWVlZUkcjIpIUSw2RBrK0tERoaCjmzZsHQRCwdetWODo64s8//5Q6GhGRZFhqiDSUjo4OFi5ciJCQENSqVQsJCQmws7PDzp07pY5GRCQJlhoiDdelSxcolUp06dIFWVlZGDlyJEaOHInMzEypoxERlSuWGiItYG5ujlOnTuHbb7+FTCbDzp07YWdnh4SEBKmjERGVG5YaIi0hl8sxZ84cnDlzBpaWlrh+/Trs7e2xdetWiKIodTwiojLHUkOkZVxcXKBUKtGjRw9kZ2dj7Nix8PLywosXL6SORkRUplhqiLRQjRo1cOzYMXz33XeQy+XYs2cP7OzsoFQqpY5GRFRmWGqItJRMJsPMmTPx22+/oU6dOrhx4wacnJywYcMGTkcRkVZiqSHScu3atYNSqcQnn3yCnJwcTJo0CYMHD0ZaWprU0YiIShVLDVEFUK1aNRw5cgQ//PADdHR0sH//ftjY2CAmJkbqaEREpYalhqiCEAQBfn5+uHDhAurXr4+//voLbdu2xerVqzkdRURagaWGqIJxdHREfHw8PDw8kJeXhylTpqB///74559/pI5GRPRBWGqIKqAqVaogODgYq1evhp6eHg4dOgRra2tERkZKHY2I6L2x1BBVUIIg4LPPPsOlS5fQqFEj3L17F+3bt8cPP/zA6Sgi0kgsNUQVnK2tLeLi4jBw4EDk5+fjyy+/hLu7O54+fSp1NCKiEmGpISKYmppi37592LBhA/T19XH06FFYW1vj4sWLUkcjIio2lhoiAvCf6agJEybg8uXLaNq0Ke7fvw8XFxd89913KCgokDoeEdE7sdQQUREKhQKxsbEYOnQoVCoVZs2ahd69e+PJkydSRyMieiuWGiJ6hbGxMX766Sds3boVBgYGOHnyJBQKBc6dOyd1NCKiN2KpIaLXEgQBPj4+iI6OxkcffYRHjx6hU6dOWLRoEVQqldTxiIhewVJDRG/VunVrREdHY8SIESgoKMDcuXPRvXt3JCUlSR2NiKgIlhoieicjIyPs2LEDO3bsQKVKlRAWFgaFQoGwsDCpoxERFWKpIaJiGzFiBGJiYtC6dWskJyeja9eumD9/PqejiEgtsNQQUYl89NFHiIyMxJgxYyCKIr755ht06dIFjx49kjoaEVVwLDVEVGKVKlXCli1bsHv3blSuXBm//fYbFAoFTp06JXU0IqrAWGqI6L0NHToUsbGxsLKywpMnT9CjRw/MmjUL+fn5UkcjogqIpYaIPkizZs1w+fJlTJw4EQDw3XffwdXVFffv35c4GRFVNCw1RPTBDAwMsH79euzbtw8mJia4ePEiFAoFjh07JnU0IqpAWGqIqNR4enoiLi4Otra2ePbsGT755BNMnz4deXl5UkcjogqApYaISlXjxo1x8eJFfP755wCA5cuXo0OHDrh7967EyYhI271XqVm3bh0aNGgAAwMDODo6Iioq6o1jXV1dIQjCK0vv3r0BAHl5eZg5cybatGkDIyMjWFpawtvb+7UfDz127BgcHR1haGiIKlWqwMPD433iE1EZ09fXx6pVq3Do0CGYmZkhMjISCoUChw8fljoaEWmxEpeaffv2wc/PD/Pnz0dcXBysrKzQvXt3pKSkvHZ8cHAwHj9+XLgkJCRALpdj4MCBAICsrCzExcVh7ty5iIuLQ3BwMBITE+Hu7l5kPz///DOGDx+OUaNG4cqVK7h48SKGDh36HodMROXFw8MD8fHxcHR0xPPnz9G3b19MnToVOTk5UkcjIm0klpCDg4Po6+tb+FilUomWlpaiv79/sbYPCAgQjY2NxYyMjDeOiYqKEgGId+/eFUVRFPPy8sTatWuLW7duLWncQmlpaSIAMS0t7b33QUTvJycnR5w2bZoIQAQg2trairdv35Y6FhFpgJJcv0t0pyY3NxexsbFwc3MrXCeTyeDm5oaIiIhi7SMwMBCDBw+GkZHRG8ekpaVBEASYmZkBAOLi4vDw4UPIZDJYW1vDwsICPXv2REJCQkniE5FE9PT0sHz5cvz666+oWrUqYmNjYW1tjYMHD0odjYi0SIlKTWpqKlQqFWrVqlVkfa1atYr1i71RUVFISEjAmDFj3jgmOzsbM2fOxJAhQ2BiYgIA+OuvvwAACxYswJw5c3D06FFUqVIFrq6uePbs2Wv3k5OTg/T09CILEUnrk08+gVKpRLt27ZCeno6BAwfC19cX2dnZUkcjIi1Qrp9+CgwMRJs2beDg4PDa5/Py8uDp6QlRFLFhw4bC9QUFBQCA2bNno3///rC1tcX27dshCAIOHDjw2n35+/vD1NS0cKlbt27pHxARlVjdunURHh6Or776CgCwfv16ODs74+bNmxInIyJNV6JSU716dcjlciQnJxdZn5ycDHNz87dum5mZiaCgIPj4+Lz2+X8Lzd27dxESElJ4lwYALCwsAAAtW7YsXKevr49GjRrh3r17r93frFmzkJaWVrjw202J1Ieuri78/f1x4sQJVK9eHUqlEjY2Nti7d6/U0YhIg5Wo1Ojp6cHW1hZhYWGF6woKChAWFgZnZ+e3bnvgwAHk5OTAy8vrlef+LTQ3b95EaGgoqlWrVuR5W1tb6OvrIzExscg2f//9N+rXr//a19PX14eJiUmRhYjUS48ePXDlyhW4uLggIyMDQ4cOxbhx4/Dy5UupoxGRBirx9JOfnx+2bNmCnTt34s8//8TEiRORmZmJUaNGAQC8vb0xa9asV7YLDAyEh4fHK4UlLy8PAwYMQExMDHbv3g2VSoWkpCQkJSUhNzcXAGBiYoIJEyZg/vz5OH36NBITEwt/Z+bfj4YTkWaytLREaGgo5s6dC0EQsGXLFjg4OOD69etSRyMiDaNT0g0GDRqEJ0+eYN68eUhKSoJCocDJkycL3zx87949yGRFu1JiYiIuXLiA06dPv7K/hw8f4siRIwAAhUJR5Lnw8HC4uroCAJYtWwYdHR0MHz4cL1++hKOjI86cOYMqVaqU9BCISM3o6Ojgm2++QceOHeHl5YWEhATY2tpiw4YN8Pb2ljoeEWkIQRRFUeoQ5SE9PR2mpqZIS0vjVBSRGktKSoKXl1fhNPfIkSOxdu3at34NBBFpr5Jcv/nbT0SkVszNzXHq1Cl88803kMlk2LFjBxwcHHD16lWpoxGRmmOpISK1I5fLMXfuXJw5cwYWFha4du0a7O3tERgYiApyc5mI3gNLDRGpLRcXFyiVSnTv3h0vX77EmDFjMHz4cLx48ULqaESkhlhqiEit1axZE8ePH4e/vz/kcjl2794NOzs7XLlyRepoRKRmWGqISO3JZDJ89dVXOHv2LOrUqYMbN27A0dERGzdu5HQUERViqSEijdG+fXsolUp88sknyMnJwcSJEzF48GD+thsRAWCpISINU61aNRw5cgTLly+Hjo4O9u/fDxsbG8TGxkodjYgkxlJDRBpHEARMmzYN58+fR/369XH79m20bdsWa9as4XQUUQXGUkNEGsvJyQnx8fHw8PBAbm4uPv/8cwwYMADPnz+XOhoRSYClhog0WpUqVRAcHIxVq1ZBV1cXwcHBsLa2RlRUlNTRiKicsdQQkcYTBAGff/45Ll26hEaNGuHvv/9Gu3btsGLFCk5HEVUgLDVEpDXs7OwQFxeHAQMGID8/H9OmTcOnn36KZ8+eSR2NiMoBSw0RaRVTU1Ps378f69evh76+Pn799VcoFApcunRJ6mhEVMZYaohI6wiCgIkTJ+Ly5cto2rQp7t+/j44dO+L7779HQUGB1PGIqIyw1BCR1lIoFIiNjcXQoUOhUqnw1Vdf4ZNPPsGTJ0+kjkZEZYClhoi0mrGxMX766Sds2bIFBgYGOHHiBBQKBc6dOyd1NCIqZSw1RKT1BEHAmDFjEBUVhRYtWuDRo0fo1KkTFi1aBJVKJXU8IiolLDVEVGG0adMGMTExGDFiBAoKCjB37lz06NEDycnJUkcjolLAUkNEFYqRkRF27NiBHTt2oFKlSggNDYVCocCZM2ekjkZEH4ilhogqpBEjRiA6OhqtWrVCUlIS3NzcMH/+fE5HEWkwlhoiqrBatmyJqKgojBkzBqIo4ptvvoGbmxsePXokdTQieg8sNURUoVWqVAlbtmzB7t27UblyZZw9exYKhQKnT5+WOhoRlRBLDRERgKFDhyI2NhZWVlZ48uQJunfvjq+//hr5+flSRyOiYmKpISL6r2bNmuHy5cuYOHEiAMDf3x+dOnXCgwcPJE5GRMXBUkNE9D8MDAywfv167Nu3D8bGxrhw4QIUCgWOHz8udTQiegeWGiKi1/D09ER8fDxsbW3x9OlT9O7dGzNmzEBeXp7U0YjoDVhqiIjeoHHjxrh48SI+++wzAMCyZcvQsWNH3L17V+JkRPQ6LDVERG+hr6+P1atXIzg4GGZmZrh8+TKsra3xyy+/SB2NiP4PlhoiomLo27cv4uPj4eDggH/++QceHh6YOnUqcnNzpY5GRP/FUkNEVEwNGjTA+fPnMW3aNADAqlWr0K5dO/z1118SJyMigKWGiKhE9PT0sHz5chw5cgRVq1ZFTEwMrK2t8fPPP0sdjajCY6khInoPffr0QXx8PNq2bYv09HQMGDAAkydPRnZ2ttTRiCoslhoiovdUr149nD17Fl999RUAYN26dWjbti1u3rwpcTKiiomlhojoA+jq6sLf3x8nTpxA9erVER8fDxsbGwQFBUkdjajCYakhIioFPXr0gFKpRMeOHZGRkYEhQ4Zg/PjxePnypdTRiCoMlhoiolJSu3ZthIWFYc6cORAEAZs3b4ajoyOuX78udTSiCoGlhoioFOno6ODbb7/F6dOnUatWLfzxxx+ws7PDjz/+KHU0Iq3HUkNEVAbc3NygVCrRuXNnZGZmwtvbG6NHj0ZmZqbU0Yi0FksNEVEZMTc3x+nTp7Fw4ULIZDJs374dDg4OuHr1qtTRiLQSSw0RURmSy+WYN28ewsLCYGFhgWvXrsHe3h7btm2DKIpSxyPSKiw1RETlwNXVFUqlEt26dcPLly/h4+MDb29vZGRkSB2NSGuw1BARlZOaNWvixIkTWLJkCeRyOX766SfY2tri999/lzoakVZgqSEiKkcymQyzZs3C2bNnUbt2bdy4cQMODg7YtGkTp6OIPhBLDRGRBNq3bw+lUonevXsjJycHEyZMwJAhQ5Ceni51NCKNxVJDRCSR6tWr48iRI1i2bBl0dHSwb98+2NjYIC4uTupoRBqJpYaISEIymQxffvklzp8/j/r16+P27dtwdnbG2rVrOR1FVEIsNUREasDJyQnx8fH49NNPkZubi88++wwDBgzA8+fPpY5GpDFYaoiI1ESVKlVw6NAhrFy5Erq6uggODoa1tTWioqKkjkakEVhqiIjUiCAImDJlCi5evIiGDRvi77//Rvv27REQEMDpKKJ3YKkhIlJD9vb2iI+Px4ABA5CXlwc/Pz94eHjg2bNnUkcjUlssNUREasrU1BT79+/HunXroKenhyNHjkChUCAiIkLqaERqiaWGiEiNCYKASZMm4fLly2jSpAnu37+PDh06YOnSpSgoKJA6HpFaYakhItIA1tbWiIuLw5AhQ6BSqTBz5kx88sknSE1NlToakdpgqSEi0hDGxsbYvXs3Nm/eDAMDA5w4cQIKhQLnz5+XOhqRWmCpISLSIIIgYOzYsYiKikKLFi3w8OFDuLq6YvHixZyOogqPpYaISAO1adMG0dHR8Pb2RkFBAebMmYMePXogOTlZ6mhEkmGpISLSUJUrV8bOnTuxfft2VKpUCSEhIVAoFDhz5ozU0YgkwVJDRKThRo4ciejoaLRq1QpJSUlwc3PDggULoFKppI5GVK5YaoiItEDLli0RFRUFHx8fiKKIhQsXomvXrnj8+LHU0YjKDUsNEZGWqFSpErZu3YqffvoJRkZGCA8Ph0KhQEhIiNTRiMoFSw0RkZYZNmwYYmNj8fHHHyMlJQXdu3fHnDlzkJ+fL3U0ojL1XqVm3bp1aNCgAQwMDODo6PjWX5B1dXWFIAivLL179wYA5OXlYebMmWjTpg2MjIxgaWkJb29vPHr06LX7y8nJgUKhgCAIUCqV7xOfiEjrNW/eHJcvX8aECRMgiiIWL16Mzp0748GDB1JHIyozJS41+/btg5+fH+bPn4+4uDhYWVmhe/fuSElJee344OBgPH78uHBJSEiAXC7HwIEDAQBZWVmIi4vD3LlzERcXh+DgYCQmJsLd3f21+5sxYwYsLS1LGpuIqMIxNDTEhg0bsG/fPhgbG+P8+fNQKBQ4fvy41NGIyoZYQg4ODqKvr2/hY5VKJVpaWor+/v7F2j4gIEA0NjYWMzIy3jgmKipKBCDevXu3yPrjx4+LLVq0EK9evSoCEOPj44udOy0tTQQgpqWlFXsbIiJtcfPmTdHGxkYEIAIQp0+fLubm5kodi+idSnL9LtGdmtzcXMTGxsLNza1wnUwmg5ubW7F/NTYwMBCDBw+GkZHRG8ekpaVBEASYmZkVrktOTsbYsWPx448/olKlSu98nZycHKSnpxdZiIgqqiZNmuDSpUv47LPPAADLli2Di4sL7t27J3EyotJTolKTmpoKlUqFWrVqFVlfq1YtJCUlvXP7qKgoJCQkYMyYMW8ck52djZkzZ2LIkCEwMTEBAIiiiJEjR2LChAmws7MrVlZ/f3+YmpoWLnXr1i3WdkRE2kpfXx+rV6/Gzz//DFNTU0REREChUODIkSNSRyMqFeX66afAwEC0adMGDg4Or30+Ly8Pnp6eEEURGzZsKFy/Zs0avHjxArNmzSr2a82aNQtpaWmFy/379z84PxGRNujXrx/i4+Nhb2+Pf/75B59++im++OIL5ObmSh2N6IOUqNRUr14dcrn8ld8WSU5Ohrm5+Vu3zczMRFBQEHx8fF77/L+F5u7duwgJCSm8SwMAZ86cQUREBPT19aGjo4MmTZoAAOzs7DBixIjX7k9fXx8mJiZFFiIi+o+GDRviwoUL8PPzAwCsXLkS7du3x507dyRORvT+SlRq9PT0YGtri7CwsMJ1BQUFCAsLg7Oz81u3PXDgAHJycuDl5fXKc/8Wmps3byI0NBTVqlUr8vzq1atx5coVKJVKKJXKwnfu79u3D4sXLy7JIRAR0X/p6enhhx9+wJEjR1ClShVER0fD2toawcHBUkcjei8lnn7y8/PDli1bsHPnTvz555+YOHEiMjMzMWrUKACAt7f3a6eJAgMD4eHh8UphycvLw4ABAxATE4Pdu3dDpVIhKSkJSUlJhbdC69Wrh9atWxcuzZo1AwA0btwYderUKfFBExHR/9enTx8olUo4OzsjLS0N/fv3x2effYbs7GypoxGVSIlLzaBBg7B8+XLMmzcPCoUCSqUSJ0+eLHzz8L179175rZHExERcuHDhtVNPDx8+xJEjR/DgwQMoFApYWFgULpcuXXrPwyIiopKoV68efvvtN8ycORMAsHbtWrRt2xa3bt2SOBlR8QmiKIpShygP6enpMDU1RVpaGt9fQ0T0FidOnIC3tzdSU1NhbGyMLVu2YNCgQVLHogqqJNdv/vYTEREV0bNnTyiVSnTo0AEvXrzA4MGDMWHCBLx8+VLqaERvxVJDRESvqF27Ns6cOYM5c+ZAEARs2rQJTk5OSExMlDoa0Rux1BAR0Wvp6Ojg22+/xalTp1CzZk38/vvvsLW1xU8//SR1NKLXYqkhIqK36tq1K5RKJTp16oTMzEwMHz4co0ePRlZWltTRiIpgqSEioneysLBASEgIFi5cCJlMhu3bt8Pe3h5Xr16VOhpRIZYaIiIqFrlcjnnz5iEsLAzm5ua4du0a7O3tsX37dlSQD9KSmmOpISKiEnF1dcWVK1fQrVs3vHz5EqNHj8aIESOQkZEhdTSq4FhqiIioxGrWrIkTJ05gyZIlkMvl+PHHH2FnZ4fff/9d6mhUgbHUEBHRe5HJZJg1axbOnj2L2rVrIzExEY6Ojti8eTOno0gSLDVERPRB2rdvD6VSiV69eiE7Oxvjx4/H0KFDkZ6eLnU0qmBYaoiI6INVr14dv/76K5YtWwYdHR0EBQXB1tYW8fHxUkejCoSlhoiISoVMJsOXX36Jc+fOoV69erh16xacnJywbt06TkdRuWCpISKiUuXs7Iz4+Hi4u7sjNzcXkydPhqenJ54/fy51NNJyLDVERFTqqlatisOHD2PlypXQ1dXFwYMHYWNjg+joaKmjkRZjqSEiojIhCAKmTJmCixcvomHDhrhz5w7atWuHlStXcjqKygRLDRERlSl7e3vExcWhf//+yMvLwxdffAEPDw88e/ZM6mikZVhqiIiozJmZmeHAgQNYt24d9PT0cOTIEVhbWyMiIkLqaKRFWGqIiKhcCIKASZMm4fLly2jSpAnu3buHjh07YtmyZSgoKJA6HmkBlhoiIipX1tbWiI2NxeDBg5Gfn48ZM2agT58+SE1NlToaaTiWGiIiKncmJibYs2cPNm/eDAMDAxw/fhwKhQLnz5+XOhppMJYaIiKShCAIGDt2LCIjI9G8eXM8fPgQnTp1wpIlSzgdRe+FpYaIiCT18ccfIyYmBsOHD4dKpcLs2bPRs2dPpKSkSB2NNAxLDRERSa5y5crYuXMntm3bBkNDQ5w+fRoKhQJnz56VOhppEJYaIiJSC4IgYNSoUYiJiUHLli3x+PFjdOnSBQsXLoRKpZI6HmkAlhoiIlIrLVu2RHR0NEaPHo2CggIsWLAA3bp1w+PHj6WORmqOpYaIiNROpUqVEBgYiB9//BFGRkY4c+YMFAoFQkJCpI5GaoylhoiI1JaXlxdiY2Px8ccfIyUlBd27d8ecOXOQn58vdTRSQyw1RESk1po3b47Lly9j/PjxEEURixcvRufOnfHw4UOpo5GaYakhIiK1Z2hoiI0bNyIoKAjGxsY4f/48FAoFTpw4IXU0UiMsNUREpDEGDRqEuLg42NjYIDU1Fb169cLMmTORl5cndTRSAyw1RESkUZo0aYJLly5h8uTJAIClS5fC1dUV9+7dkzgZSY2lhoiINI6+vj7WrFmDgwcPwtTUFJcuXYJCocCvv/4qdTSSEEsNERFprP79+yM+Ph729vb4559/4O7ujmnTpiE3N1fqaCQBlhoiItJoDRs2xIULF/DFF18AAFasWIEOHTrgzp07Eiej8sZSQ0REGk9PTw8rVqzAL7/8gipVqiAqKgrW1tYIDg6WOhqVI5YaIiLSGu7u7lAqlXB2dkZaWhr69++Pzz77DDk5OVJHo3LAUkNERFqlXr16+O233zBjxgwAwNq1a9G2bVvcunVL4mRU1lhqiIhI6+jq6uL777/HsWPHUK1atcLvttm/f7/U0agMsdQQEZHW6tWrF5RKJTp06IAXL15g0KBBmDBhAl6+fCl1NCoDLDVERKTV6tSpgzNnzmD27NkQBAGbNm2Ck5MTEhMTpY5GpYylhoiItJ6Ojg4WLVqEU6dOoWbNmvj9999ha2uL3bt3Sx2NShFLDRERVRhdu3aFUqlEp06dkJmZCS8vL4wZMwZZWVlSR6NSwFJDREQVioWFBUJCQrBgwQIIgoDAwEA4ODjg2rVrUkejD8RSQ0REFY5cLsf8+fMRFhYGc3NzXL16Ffb29tixY4fU0egDsNQQEVGF1alTJ1y5cgVdu3ZFVlYWRo0ahREjRiAjI0PqaPQeWGqIiKhCq1mzJk6ePInFixdDJpNh165dsLe3xx9//CF1NCohlhoiIqrwZDIZvv76a5w9exa1a9fG9evX4eDggC1btkAURanjUTGx1BAREf1Xhw4doFQq0bNnT2RnZ2PcuHEYOnQo0tPTpY5GxcBSQ0RE9D+qV6+Oo0ePYunSpZDL5QgKCoKtrS3i4+OljkbvwFJDRET0f8hkMkyfPh3nz59HvXr1cOvWLTg5OWH9+vWcjlJjLDVERERv4OzsjPj4eLi7uyM3Nxe+vr7w9PREWlqa1NHoNVhqiIiI3qJq1ao4fPgwAgICoKuri4MHD8La2hoxMTFSR6P/g6WGiIjoHQRBwNSpU3Hx4kU0bNgQd+7cQdu2bbFq1SpOR6kRlhoiIqJisre3R1xcHPr374+8vDxMnToV/fr1wz///CN1NAJLDRERUYmYmZnhwIEDWLt2LfT09HD48GFYW1vj8uXLUker8FhqiIiISkgQBPj6+iIiIgKNGzfG3bt30aFDByxfvhwFBQVSx6uwWGqIiIjek42NDeLi4jBo0CDk5+dj+vTpcHd3R2pqqtTRKiSWGiIiog9gYmKCvXv3YtOmTdDX18exY8dgbW2NCxcuSB2twmGpISIi+kCCIGDcuHGIiopC8+bN8eDBA7i6usLf35/TUeWIpYaIiKiUfPzxx4iJiYGXlxdUKhW+/vpr9OzZEykpKVJHqxDeq9SsW7cODRo0gIGBARwdHREVFfXGsa6urhAE4ZWld+/eAIC8vDzMnDkTbdq0gZGRESwtLeHt7Y1Hjx4V7uPvv/+Gj48PGjZsCENDQzRu3Bjz589Hbm7u+8QnIiIqM5UrV8auXbuwbds2GBoa4vTp01AoFDh79qzU0bReiUvNvn374Ofnh/nz5yMuLg5WVlbo3r37G1tocHAwHj9+XLgkJCRALpdj4MCBAICsrCzExcVh7ty5iIuLQ3BwMBITE+Hu7l64j+vXr6OgoACbNm3C1atXERAQgI0bN+Lrr79+z8MmIiIqO4IgYNSoUYiOjkbLli3x+PFjdOnSBd988w1UKpXU8bSXWEIODg6ir69v4WOVSiVaWlqK/v7+xdo+ICBANDY2FjMyMt44JioqSgQg3r17941jli5dKjZs2LDYudPS0kQAYlpaWrG3ISIi+lAZGRniqFGjRAAiALFz587i48ePpY6lMUpy/S7RnZrc3FzExsbCzc2tcJ1MJoObmxsiIiKKtY/AwEAMHjwYRkZGbxyTlpYGQRBgZmb21jFVq1YtdnYiIiIpGBkZYdu2bdi1axeMjIxw5swZKBQKhIaGSh1N65So1KSmpkKlUqFWrVpF1teqVQtJSUnv3D4qKgoJCQkYM2bMG8dkZ2dj5syZGDJkCExMTF475tatW1izZg3Gjx//xv3k5OQgPT29yEJERCSV4cOHIyYmBm3atEFycjK6deuGuXPnIj8/X+poWqNcP/0UGBiINm3awMHB4bXP5+XlwdPTE6IoYsOGDa8d8/DhQ/To0QMDBw7E2LFj3/ha/v7+MDU1LVzq1q1bKsdARET0vlq0aIHIyEiMHz8eoihi0aJF6NKlCx4+fCh1NK1QolJTvXp1yOVyJCcnF1mfnJwMc3Pzt26bmZmJoKAg+Pj4vPb5fwvN3bt3ERIS8tq7NI8ePUKnTp3Qtm1bbN68+a2vN2vWLKSlpRUu9+/ff8fRERERlT1DQ0Ns3LgRe/fuhbGxMc6dOweFQoGTJ09KHU3jlajU6OnpwdbWFmFhYYXrCgoKEBYWBmdn57due+DAAeTk5MDLy+uV5/4tNDdv3kRoaCiqVav2ypiHDx/C1dUVtra22L59O2Syt0fX19eHiYlJkYWIiEhdDB48GLGxsbC2tkZqaip69uyJr776Cnl5eVJH01glnn7y8/PDli1bsHPnTvz555+YOHEiMjMzMWrUKACAt7c3Zs2a9cp2gYGB8PDweKWw5OXlYcCAAYiJicHu3buhUqmQlJSEpKSkwu+h+bfQ1KtXD8uXL8eTJ08KxxAREWmqpk2b4tKlS/D19QUAfP/993B1deXswnvSKekGgwYNwpMnTzBv3jwkJSUV3jL7983D9+7de+UuSmJiIi5cuIDTp0+/sr+HDx/iyJEjAACFQlHkufDwcLi6uiIkJAS3bt3CrVu3UKdOnSJjRFEs6SEQERGpDQMDA6xduxadOnWCj48PLl26BIVCgR07dqBPnz5Sx9MoglhBWkF6ejpMTU2RlpbGqSgiIlJLf/31FwYPHozo6GgA/5kd8ff3h56ensTJpFOS6zd/+4mIiEhNNGrUCBcuXMDUqVMBACtWrECHDh3w999/S5pLU7DUEBERqRE9PT0EBATgl19+QZUqVRAVFQVra2scOnRI6mhqj6WGiIhIDbm7uyM+Ph5OTk54/vw5+vXrh88//xw5OTlSR1NbLDVERERqqn79+jh37hxmzJgBAFizZg3atWuH27dvS5xMPbHUEBERqTFdXV18//33OHbsGKpVq4bY2FjY2NjgwIEDUkdTOyw1REREGqBXr15QKpVo37490tPT4enpiUmTJiE7O1vqaGqDpYaIiEhD1KlTB+Hh4fj6668hCAI2bNgAJycn3LhxQ+poaoGlhoiISIPo6Ohg8eLFOHnyJGrUqIErV67AxsYGu3fvljqa5FhqiIiINFC3bt1w5coVuLq6IjMzE15eXhgzZgyysrKkjiYZlhoiIiINZWFhgdDQUMyfPx+CICAwMBCOjo74888/pY4mCZYaIiIiDSaXy7FgwQKEhobC3NwcCQkJsLOzw86dO6WOVu5YaoiIiLRA586doVQq0bVrV2RlZWHkyJEYMWIEMjMzpY5WblhqiIiItEStWrVw8uRJLFq0CDKZDLt27YKdnR3++OMPqaOVC5YaIiIiLSKTyTB79myEh4fD0tIS169fh4ODA7Zu3QpRFKWOV6ZYaoiIiLRQx44doVQq0bNnT2RnZ2Ps2LHw8vLCixcvpI5WZlhqiIiItFSNGjVw9OhRfP/995DL5dizZw9sbW2hVCqljlYmWGqIiIi0mEwmw4wZM3Du3DnUrVsXN2/ehJOTEzZs2KB101EsNURERBVA27ZtoVQq0adPH+Tk5GDSpEkYNGgQ0tLSpI5WalhqiIiIKoiqVavil19+wYoVK6Crq4sDBw7AxsYGMTExUkcrFSw1REREFYggCPjiiy9w4cIFNGjQAH/99Rfatm2L1atXa/x0FEsNERFRBeTg4ID4+Hj069cPeXl5mDJlCvr164d//vlH6mjvjaWGiIiogjIzM8PBgwexZs0a6Onp4fDhw7C2tkZkZKTU0d4LSw0REVEFJggCJk+ejIiICDRu3Bh3795F+/bt8cMPP2jcdBRLDREREcHGxgZxcXEYNGgQ8vPz8eWXX8Ld3R1Pnz6VOlqxsdQQERERAMDExAR79+7Fxo0boa+vj6NHj0KhUODixYtSRysWlhoiIiIqJAgCxo8fj8jISDRr1gwPHjyAi4sLvvvuOxQUFEgd761YaoiIiOgVVlZWiI2NhZeXF1QqFWbNmoVevXohJSVF6mhvxFJDREREr1W5cmXs2rULgYGBMDQ0xKlTp6BQKPDbb79JHe21WGqIiIjojQRBwOjRoxEdHY2WLVvi8ePH6Ny5M7799luoVCqp4xXBUkNERETv1KpVK0RFRWHUqFEoKCjAvHnz0L17dyQlJUkdrRBLDRERERWLkZERtm3bhl27dsHIyAhhYWFQKBQICwuTOhoAlhoiIiIqoeHDhyMmJgZt2rRBcnIyunbtinnz5kk+HcVSQ0RERCXWokULREZGYty4cRBFEd9++y3c3NyQl5cnWSaWGiIiInovhoaG2LRpE/bu3YvKlSvDzs4Ourq6kuXRkeyViYiISCsMHjwYDg4OqFOnjqQ5WGqIiIjogzVq1EjqCJx+IiIiIu3AUkNERERagaWGiIiItAJLDREREWkFlhoiIiLSCiw1REREpBVYaoiIiEgrsNQQERGRVmCpISIiIq3AUkNERERagaWGiIiItAJLDREREWkFlhoiIiLSChXmV7pFUQQApKenS5yEiIiIiuvf6/a/1/G3qTCl5sWLFwCAunXrSpyEiIiISurFixcwNTV96xhBLE710QIFBQV49OgRjI2NIQhCqe47PT0ddevWxf3792FiYlKq+6b/j+e5fPA8lw+e5/LB81x+yupci6KIFy9ewNLSEjLZ2981U2Hu1MhkMtSpU6dMX8PExIT/0ZQDnufywfNcPnieywfPc/kpi3P9rjs0/+IbhYmIiEgrsNQQERGRVmCpKQX6+vqYP38+9PX1pY6i1XieywfPc/ngeS4fPM/lRx3OdYV5ozARERFpN96pISIiIq3AUkNERERagaWGiIiItAJLDREREWkFlpp3OHfuHPr06QNLS0sIgoDDhw+/c5uzZ8/CxsYG+vr6aNKkCXbs2FHmObVBSc91cHAwunbtiho1asDExATOzs44depU+YTVYO/zZ/pfFy9ehI6ODhQKRZnl0xbvc55zcnIwe/Zs1K9fH/r6+mjQoAG2bdtW9mE12Puc5927d8PKygqVKlWChYUFRo8ejadPn5Z9WA3m7+8Pe3t7GBsbo2bNmvDw8EBiYuI7tztw4ABatGgBAwMDtGnTBsePHy/TnCw175CZmQkrKyusW7euWOPv3LmD3r17o1OnTlAqlZg6dSrGjBnDi20xlPRcnzt3Dl27dsXx48cRGxuLTp06oU+fPoiPjy/jpJqtpOf5X8+fP4e3tze6dOlSRsm0y/ucZ09PT4SFhSEwMBCJiYnYu3cvmjdvXoYpNV9Jz/PFixfh7e0NHx8fXL16FQcOHEBUVBTGjh1bxkk122+//QZfX19cvnwZISEhyMvLQ7du3ZCZmfnGbS5duoQhQ4bAx8cH8fHx8PDwgIeHBxISEsouqEjFBkA8dOjQW8fMmDFDbNWqVZF1gwYNErt3716GybRPcc7167Rs2VJcuHBh6QfSUiU5z4MGDRLnzJkjzp8/X7SysirTXNqmOOf5xIkToqmpqfj06dPyCaWFinOely1bJjZq1KjIutWrV4u1a9cuw2TaJyUlRQQg/vbbb28c4+npKfbu3bvIOkdHR3H8+PFllot3akpZREQE3Nzciqzr3r07IiIiJEpUcRQUFODFixeoWrWq1FG0zvbt2/HXX39h/vz5UkfRWkeOHIGdnR2WLl2K2rVro1mzZvjyyy/x8uVLqaNpFWdnZ9y/fx/Hjx+HKIpITk7GwYMH0atXL6mjaZS0tDQAeOvft1JcDyvMD1qWl6SkJNSqVavIulq1aiE9PR0vX76EoaGhRMm03/Lly5GRkQFPT0+po2iVmzdv4quvvsL58+eho8O/MsrKX3/9hQsXLsDAwACHDh1CamoqJk2ahKdPn2L79u1Sx9Ma7dq1w+7duzFo0CBkZ2cjPz8fffr0KfF0bEVWUFCAqVOnol27dmjduvUbx73pepiUlFRm2XinhrTCnj17sHDhQuzfvx81a9aUOo7WUKlUGDp0KBYuXIhmzZpJHUerFRQUQBAE7N69Gw4ODujVqxdWrFiBnTt38m5NKbp27RqmTJmCefPmITY2FidPnsTff/+NCRMmSB1NY/j6+iIhIQFBQUFSR3kF/7erlJmbmyM5ObnIuuTkZJiYmPAuTRkJCgrCmDFjcODAgVduddKHefHiBWJiYhAfH4/JkycD+M/FVxRF6Ojo4PTp0+jcubPEKbWDhYUFateuDVNT08J1H330EURRxIMHD9C0aVMJ02kPf39/tGvXDtOnTwcAfPzxxzAyMkKHDh2waNEiWFhYSJxQvU2ePBlHjx7FuXPnUKdOnbeOfdP10NzcvMzy8U5NKXN2dkZYWFiRdSEhIXB2dpYokXbbu3cvRo0ahb1796J3795Sx9E6JiYm+OOPP6BUKguXCRMmoHnz5lAqlXB0dJQ6otZo164dHj16hIyMjMJ1N27cgEwme+fFg4ovKysLMlnRS59cLgcAiPwpxDcSRRGTJ0/GoUOHcObMGTRs2PCd20hxPeSdmnfIyMjArVu3Ch/fuXMHSqUSVatWRb169TBr1iw8fPgQu3btAgBMmDABa9euxYwZMzB69GicOXMG+/fvx7Fjx6Q6BI1R0nO9Z88ejBgxAqtWrYKjo2PhPK2hoWGR/9ulokpynmUy2Stz5jVr1oSBgcFb59Kp5H+ehw4dim+//RajRo3CwoULkZqaiunTp2P06NG8y/sWJT3Pffr0wdixY7FhwwZ0794djx8/xtSpU+Hg4ABLS0upDkPt+fr6Ys+ePfjll19gbGxc+Petqalp4Z9Pb29v1K5dG/7+/gCAKVOmwMXFBT/88AN69+6NoKAgxMTEYPPmzWUXtMw+V6UlwsPDRQCvLCNGjBBFURRHjBghuri4vLKNQqEQ9fT0xEaNGonbt28v99yaqKTn2sXF5a3j6fXe58/0/+JHuovnfc7zn3/+Kbq5uYmGhoZinTp1RD8/PzErK6v8w2uQ9znPq1evFlu2bCkaGhqKFhYW4rBhw8QHDx6Uf3gN8rpzDKDI9c3FxeWVv3/3798vNmvWTNTT0xNbtWolHjt2rExzCv8NS0RERKTR+J4aIiIi0gosNURERKQVWGqIiIhIK7DUEBERkVZgqSEiIiKtwFJDREREWoGlhoiIiLQCSw0RqT1XV1dMnTr1jc83aNAAK1euLLc8RKSe+DMJRKTxoqOjYWRkJHUMIpIYSw0RabwaNWpIHYGI1ACnn4hII+Tn52Py5MkwNTVF9erVMXfu3MJfVf6/00+CIGDr1q3o27cvKlWqhKZNm+LIkSMSJSei8sJSQ0QaYefOndDR0UFUVBRWrVqFFStWYOvWrW8cv3DhQnh6euL3339Hr169MGzYMDx79qwcExNReWOpISKNULduXQQEBKB58+YYNmwYPvvsMwQEBLxx/MiRIzFkyBA0adIES5YsQUZGBqKiosoxMRGVN5YaItIITk5OEASh8LGzszNu3rwJlUr12vEff/xx4T8bGRnBxMQEKSkpZZ6TiKTDUkNEWklXV7fIY0EQUFBQIFEaIioPLDVEpBEiIyOLPL58+TKaNm0KuVwuUSIiUjcsNUSkEe7duwc/Pz8kJiZi7969WLNmDaZMmSJ1LCJSI/yeGiLSCN7e3nj58iUcHBwgl8sxZcoUjBs3TupYRKRGBPHfL3ogIiIi0mCcfiIiIiKtwFJDREREWoGlhoiIiLQCSw0RERFpBZYaIiIi0gosNURERKQVWGqIiIhIK7DUEBERkVZgqSEiIiKtwFJDREREWoGlhoiIiLQCSw0RERFphf8HwboXaiidZCwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABIa0lEQVR4nO3df1xVdb7v8ffem1+JAgICoiiav03BRLY6ndIrJ2ycyn6YdjTN44/q+qNkxibnntSce8JuN2WmnHGaqPFMFh4nmynn5OiQ2njkh0KkpFKahj/4ITqCkIKw9/2jy649gLIRWJvN6/l4rMcjvuu71vqs3Txmv1vrs9Y22e12uwAAADo4s9EFAAAAtAZCDQAA8AiEGgAA4BEINQAAwCMQagAAgEcg1AAAAI9AqAEAAB6BUAMAADwCoQYAAHgEQg0AAPAIhBoADr/73e9kMpmaXDIzMyXJaczLy0vBwcEaPXq0nn76aR05cqTBfvfs2SOTyaQ//OEPjR538eLFMplMDcbr6ur01ltvacKECQoODpavr6+io6M1d+5cHTx4sNF9/epXv5LJZJLVanUaj46Ovu651S+/+93vHOe4ePHiBvu/cOGCli9frsGDB8vPz0/BwcFKTEzU9u3bG8w9deqUY7/vvfdeg/WrV6+WyWRSWVlZo+cCwDVeRhcAwP2sWbNG/fr1azA+YMAAxz//8z//s2bPni273a7y8nJ99tln2rRpk371q1/ppZdeUlJS0k3VcOXKFT344IPasWOH7rzzTv3sZz9TcHCwTp06pf/8z//Upk2bVFhYqN69ezttt3nzZkVHRys7O1vHjx931JySkqLKykrHvP/6r//Su+++q/Xr1ys0NNQxPn78+CZrKigo0KRJk3T+/HnNnTtXcXFxunTpkjZv3qx7771XP/nJT/Tyyy83uu2aNWv04IMPNhreALQSOwD8f2+99ZZdkv3AgQPXnSfJvmjRogbjZWVl9nHjxtkl2f/85z87xnfv3m2XZN+6dWuj+1u0aJH9H//vqH5s/fr1DebX1tbaX375Zfvp06edxr/66iu7JPu2bdvsPXr0sK9evbrJc3j55ZftkuwnT55s1jnW1NTYb7vtNnuXLl3smZmZDeqZPn26XZI9LS3NMX7y5Em7JHtsbKxdkv29995z2m7VqlV2Sfbz5883WSeA5uP2E4BWExISorS0NHl5eenf//3fW7yfM2fO6De/+Y3++Z//Wc8880yD9RaLRT/5yU8avUrTvXt3TZkyRQ8//LA2b97c4hr+0Xvvvaf8/Hw999xzDW5tWSwW/eY3v1FQUJBWr17dYNsZM2Zo0KBBWrNmjex2e6vVBMAZoQZAA+Xl5SorK3NaLly40Kxt+/Tpo7vuukuZmZmqqKho0fE/+ugj1dbW6rHHHnNpu82bN+vBBx+Uj4+PHn30UX355Zc6cOBAi2r4Rx9++KEkafbs2Y2uDwwM1P33369jx47p+PHjTussFov+7d/+TZ999pnef//9VqkHQEOEGgANJCQkqEePHk5Lr169mr39bbfdJpvNplOnTrXo+EePHpUkjRgxotnb5OTk6NixY5oxY4Yk6Y477lDv3r1b7WrNkSNHFBgYqL59+zY5JyYmRtJ39X/fv/zLv2jgwIFcrQHaEI3CABrYsGGDBg0a5DRmsViavX3Xrl0lSZcvX27R8euv8HTr1q3Z22zevFnh4eGaOHGipG+fXpo+fbrefvttvfLKKy7V35jLly/fsJ769Y1doaq/WjNnzhz98Y9/1AMPPHBT9QBoiFADoIH4+HjFxcW1ePv6p4xcCSXfFxAQIKn5oaiurk5paWmaOHGiTp486Ri3Wq165ZVXlJ6errvvvrtFtdTr1q3bDR+9rq+3qfOeOXOmfv7zn2vNmjWaOnXqTdUDoCFuPwFodfn5+bJYLI7Hwv38/CR9+5h2Y7755hvHHEkaMmSIJOnw4cPNOt7HH3+soqIipaWlaeDAgY7lkUcekaRWuQU1dOhQlZeXq7CwsMk5hw4dkiQNGzas0fX1V2vy8vL0pz/96aZrAuCMUAOgVRUWFmrv3r0aN26c44pFfR9KQUFBo9sUFBQ49arcc889slgsevvtt5t1zM2bNyssLExbt25tsDz66KN6//33mwxUzfWjH/1IkvQf//Efja6vqKjQn/70Jw0ZMsTpfT7/aNasWRowYIBeeOEFemuAVkaoAdBqLl68qEcffVR1dXX6X//rfznGe/bsqdjYWL399tu6dOmS0zY5OTnKzMzUPffc4xiLiorSggULtHPnTr366qsNjmOz2fTKK6/ozJkzunLlirZt26Yf/ehHevjhhxssixcv1uXLl/XBBx/c1Lk9/PDDGjZsmNauXdvgbcY2m01PPfWU/v73v2vVqlXX3c/3r9bcbE0AnNFTA6CBjz76SMeOHWswPn78ePXv31+S9MUXX+jtt9+W3W5XRUWFPvvsM23dulWVlZVat26dJk+e7LTtunXrlJiYqNjYWD3++OOKjIzU0aNH9frrr6tnz55asWKF0/xXXnlFJ06c0NKlSx2hpXv37iosLNTWrVsdTzp98MEHunz5su67775Gz2Xs2LHq0aOHNm/erOnTp7f4M/Hx8dEf/vAHTZo0SXfccYfTG4Xfeecd5ebm6sc//rHj6avrqe+tycvLa3E9ABph7Lv/ALiT+jcKN7W89dZbdrvd7jRmNpvtQUFB9lGjRtmffvpp++eff97k/jMzM+0/+tGP7N27d7d7eXnZe/XqZZ8/f779zJkzjc6vra21v/HGG/Z/+qd/sgcGBtq9vb3tffv2tc+dO9f+6aef2u12u/3ee++1+/n52auqqpo87uOPP2739va2l5WVOcZcfaNwvdLSUntSUpJ9wIABdl9fX3tQUJA9ISHB/sEHHzSYW/9G4ZdffrnBuu9/1rxRGGgdJrudm7oAAKDjo6cGAAB4BEINAADwCIQaAADgEQg1AADAIxBqAACARyDUAAAAj9BpXr5ns9l07tw5devWTSaTyehyAABAM9jtdl2+fFmRkZEym69/LabThJpz584pKirK6DIAAEALnD59Wr17977unE4Taup/WO/06dMKCAgwuBoAANAcFRUVioqKcnyPX0+nCTX1t5wCAgIINQAAdDDNaR1pUaPwhg0bFB0dLT8/P1mtVmVnZzc5d8KECTKZTA2WKVOmOM07evSo7rvvPgUGBsrf319jxoxRYWHhdffz5JNPtqR8AADggVy+UrNlyxYlJSVp48aNslqtSklJUWJiogoKChQWFtZg/rZt21RTU+P4+8KFC4qJidG0adMcYydOnNAdd9yhefPm6YUXXlBAQIA+//xz+fn5Oe1rwYIFWrNmjePvLl26uFo+AADwUC7/oKXVatWYMWP02muvSfr2qaKoqCgtWbJEzz333A23T0lJ0cqVK1VUVCR/f39J0owZM+Tt7a3f//73TW43YcIExcbGKiUlxZVyHSoqKhQYGKjy8nJuPwEA0EG48v3t0pWampoa5eTkaMWKFY4xs9mshIQEZWRkNGsfqampmjFjhiPQ2Gw2/fnPf9azzz6rxMREffrpp+rXr59WrFihqVOnOm27efNmvf3224qIiNC9996r559/vsmrNdXV1aqurnb8XVFR4cqpAgDQLmw2m9Mdjc7G29tbFoulVfblUqgpKytTXV2dwsPDncbDw8N17NixG26fnZ2t/Px8paamOsZKS0tVWVmptWvX6n//7/+tl156STt27NCDDz6o3bt366677pIk/cu//Iv69u2ryMhIHTp0SD/96U9VUFCgbdu2NXqs5ORkvfDCC66cHgAA7aqmpkYnT56UzWYzuhRDBQUFKSIi4qbfI9euTz+lpqZqxIgRio+Pd4zV/4u8//77tWzZMklSbGys9u/fr40bNzpCzcKFCx3bjBgxQj179tSkSZN04sQJ3XrrrQ2OtWLFCiUlJTn+rn8kDAAAd2C321VUVCSLxaKoqKgbvljOE9ntdn3zzTcqLS2VJPXs2fOm9udSqAkNDZXFYlFJSYnTeElJiSIiIq67bVVVldLS0pwafev36eXlpWHDhjmNDx06VPv27Wtyf1arVZJ0/PjxRkONr6+vfH19r1sTAABGqa2t1TfffKPIyMhO/eDLLbfcIunbOzdhYWE3dSvKpVjo4+Oj0aNHKz093TFms9mUnp6ucePGXXfbrVu3qrq6WrNmzWqwzzFjxqigoMBp/IsvvlDfvn2b3F9eXp6km091AAAYoa6uTtK334OdXX2ou3bt2k3tx+XbT0lJSZozZ47i4uIUHx+vlJQUVVVVae7cuZKk2bNnq1evXkpOTnbaLjU1VVOnTlVISEiDfS5fvlzTp0/XnXfeqYkTJ2rHjh368MMPtWfPHknfPvL9zjvv6Ic//KFCQkJ06NAhLVu2THfeeadGjhzZgtMGAMA98HuErfcZuBxqpk+frvPnz2vlypUqLi5WbGysduzY4WgeLiwsbHBfsKCgQPv27dPOnTsb3ecDDzygjRs3Kjk5WUuXLtXgwYP13nvv6Y477pD0bYr961//6ghQUVFReuihh/Rv//ZvrpYPAAA8lMvvqemoeE8NAMCdXL16VSdPnlS/fv0avGzW00RHR+uZZ57RM8880+j6630Wrnx/d75WawAA4JEINa2gpKRER48eNboMAAA6NULNTap/w/GiRYuMLgUAgDY3YcIELV68WIsXL1ZgYKBCQ0P1/PPPq76bpbS0VPfee69uueUW9evXT5s3b2632tr15XueKCYmRtK3b0uura2VlxcfKQDAdfUvojNCly5dXHoCadOmTZo3b56ys7N18OBBLVy4UH369NGCBQv0+OOP69y5c9q9e7e8vb21dOlSx8v12hrfwDdp2LBhCggIUEVFhfLz8xUbG2t0SQCADuibb75R165dDTl2ZWWl4zcZmyMqKkrr16+XyWTS4MGDdfjwYa1fv1533XWXPvroI2VnZ2vMmDGSvn2ly9ChQ9uqdCfcfrpJFovF8Xbj/fv3G1wNAABtb+zYsU5XdsaNG6cvv/xSR48elZeXl0aPHu1YN2TIEAUFBbVLXVypaQXjxo3Trl27lJGRof/5P/+n0eUAADqgLl26qLKy0rBjewJCTSuo/4mIjIwMgysBAHRUJpPJpVtARsrKynL6OzMzUwMHDtSQIUNUW1urnJwcx+2ngoICXbp0qV3q4vZTKxg7dqykb3/Oob2aoQAAMEphYaGSkpJUUFCgd999V6+++qqefvppDR48WJMnT9YTTzyhrKws5eTkaP78+Y4frWxrhJpWEBQU5PiVca7WAAA83ezZs3XlyhXFx8dr0aJFevrpp7Vw4UJJ0ltvvaXIyEjdddddevDBB7Vw4UKFhYW1S13cfmol48aN05EjR5SRkaH777/f6HIAAGgz3t7eSklJ0a9//esG6yIiIrR9+3ansccee6xd6uJKTSuhrwYAAGMRalrJ+PHjJUkHDhzQtWvXDK4GAIDOh9tPrWTw4MEKCgrSpUuX9NlnnykuLs7okgAAaHV79uwxuoQmcaWmlZjNZsdTUNyCAgCg/RFqWlH9LShCDQCguep/CLIza63PgFDTimgWBgA0l8VikSTV1NQYXInx6n/I09vb+6b2Q09NK4qPj5fJZNKpU6dUVFSknj17Gl0SAMBNeXl5qUuXLjp//ry8vb1lNne+6wz1v0xeWlqqoKAgR9BrKUJNKwoICNBtt92mw4cPKyMjQw8++KDRJQEA3JTJZFLPnj118uRJff3110aXY6igoCBFRETc9H4INa1s/PjxhBoAQLP4+Pho4MCBnfoWlLe3901foalHqGll48aN029+8xv6agAAzWI2m+Xn52d0GR6h893Aa2P1zcIHDx7s1MkbAID2RqhpZQMHDlRISIiqq6v16aefGl0OAACdBqGmlZlMJh7tBgDAAISaNlAfavbv329wJQAAdB6EmjbAlRoAANofoaYNjBkzRmazWWfOnNGZM2eMLgcAgE6BUNMGunbtqpiYGElcrQEAoL0QatoIfTUAALQvQk0boa8GAID2RahpI/WhJjc3V1evXjW4GgAAPB+hpo30799fYWFhunbtmnJzc40uBwAAj9eiULNhwwZFR0fLz89PVqtV2dnZTc6dMGGCTCZTg2XKlClO844ePar77rtPgYGB8vf315gxY1RYWOhYf/XqVS1atEghISHq2rWrHnroIZWUlLSk/Hbx/Zfw0VcDAEDbcznUbNmyRUlJSVq1apVyc3MVExOjxMRElZaWNjp/27ZtKioqciz5+fmyWCyaNm2aY86JEyd0xx13aMiQIdqzZ48OHTqk559/3ukHvpYtW6YPP/xQW7du1d69e3Xu3Dm3/xVs+moAAGg/JrvdbndlA6vVqjFjxui1116TJNlsNkVFRWnJkiV67rnnbrh9SkqKVq5cqaKiIvn7+0uSZsyYIW9vb/3+979vdJvy8nL16NFD77zzjh5++GFJ0rFjxzR06FBlZGRo7NixNzxuRUWFAgMDVV5eroCAgOae7k355JNPdNddd6lnz546e/asTCZTuxwXAABP4cr3t0tXampqapSTk6OEhITvdmA2KyEhodlXI1JTUzVjxgxHoLHZbPrzn/+sQYMGKTExUWFhYbJarfrjH//o2CYnJ0fXrl1zOu6QIUPUp0+fJo9bXV2tiooKp6W9xcXFycvLS0VFRU630gAAQOtzKdSUlZWprq5O4eHhTuPh4eEqLi6+4fbZ2dnKz8/X/PnzHWOlpaWqrKzU2rVrNXnyZO3cuVMPPPCAHnzwQe3du1eSVFxcLB8fHwUFBTX7uMnJyQoMDHQsUVFRrpxqq+jSpYtiY2Ml0VcDAEBba9enn1JTUzVixAjFx8c7xmw2myTp/vvv17JlyxQbG6vnnntOP/rRj7Rx48YWH2vFihUqLy93LKdPn77p+luCvhoAANqHS6EmNDRUFoulwVNHJSUlioiIuO62VVVVSktL07x58xrs08vLS8OGDXMaHzp0qOOWTUREhGpqanTp0qVmH9fX11cBAQFOixEINQAAtA+XQo2Pj49Gjx6t9PR0x5jNZlN6errjy7spW7duVXV1tWbNmtVgn2PGjFFBQYHT+BdffKG+fftKkkaPHi1vb2+n4xYUFKiwsPCGxzXa+PHjJUl5eXn65ptvDK4GAADP5eXqBklJSZozZ47i4uIUHx+vlJQUVVVVae7cuZKk2bNnq1evXkpOTnbaLjU1VVOnTlVISEiDfS5fvlzTp0/XnXfeqYkTJ2rHjh368MMPtWfPHklSYGCg5s2bp6SkJAUHBysgIEBLlizRuHHjmvXkk5H69Omjnj17qqioSAcPHtSdd95pdEkAAHgkl0PN9OnTdf78ea1cuVLFxcWKjY3Vjh07HM3DhYWFMpudLwAVFBRo37592rlzZ6P7fOCBB7Rx40YlJydr6dKlGjx4sN577z3dcccdjjnr16+X2WzWQw89pOrqaiUmJupXv/qVq+W3u/qX8G3btk0ZGRmEGgAA2ojL76npqIx4T029//t//6+WL1+u+++/3+lRdQAAcH1t9p4atEx9X01GRoY6SYYEAKDdEWrawe233y5vb2+Vlpbqq6++MrocAAA8EqGmHfj5+en222+XxKPdAAC0FUJNO/n+LSgAAND6CDXthJfwAQDQtgg17aQ+1Hz22WeqrKw0uBoAADwPoaad9O7dW71795bNZtOBAweMLgcAAI9DqGlH9NUAANB2CDXtiL4aAADaDqGmHX0/1PASPgAAWhehph2NGjVKvr6+unDhgr788kujywEAwKMQatqRj4+P4uLiJHELCgCA1kaoaWf01QAA0DYINe2sPtTs37/f4EoAAPAshJp2Vh9q8vPzVVFRYXA1AAB4DkJNO+vZs6eio6Nlt9uVnZ1tdDkAAHgMQo0BuAUFAEDrI9QYgGZhAABaH6HGAPWhJjMzUzabzeBqAADwDIQaA8TExOiWW27RpUuXVFBQYHQ5AAB4BEKNAby9vTVmzBhJ9NUAANBaCDUGoa8GAIDWRagxCKEGAIDWRagxSH2oOXLkiC5dumRsMQAAeABCjUHCwsJ06623Svr2KSgAAHBzCDUG4hYUAACth1BjIEINAACth1BjoPHjx0uSsrKyVFdXZ3A1AAB0bIQaA912223y9/dXRUWFjhw5YnQ5AAB0aIQaA3l5eSk+Pl4St6AAALhZhBqD1d+CItQAAHBzCDUGo1kYAIDW0aJQs2HDBkVHR8vPz09Wq1XZ2dlNzp0wYYJMJlODZcqUKY45jz/+eIP1kydPdtpPdHR0gzlr165tSfluZezYsZKkgoICXbhwweBqAADouFwONVu2bFFSUpJWrVql3NxcxcTEKDExUaWlpY3O37Ztm4qKihxLfn6+LBaLpk2b5jRv8uTJTvPefffdBvtas2aN05wlS5a4Wr7bCQkJ0aBBgyTxEj4AAG6Gy6Fm3bp1WrBggebOnathw4Zp48aN6tKli958881G5wcHBysiIsKx7Nq1S126dGkQanx9fZ3mde/evcG+unXr5jTH39/f1fLdEn01AADcPJdCTU1NjXJycpSQkPDdDsxmJSQkNPsLOTU1VTNmzGgQSPbs2aOwsDANHjxYTz31VKO3YtauXauQkBCNGjVKL7/8smpra5s8TnV1tSoqKpwWd0VfDQAAN8/LlcllZWWqq6tTeHi403h4eLiOHTt2w+2zs7OVn5+v1NRUp/HJkyfrwQcfVL9+/XTixAn97Gc/0z333KOMjAxZLBZJ0tKlS3X77bcrODhY+/fv14oVK1RUVKR169Y1eqzk5GS98MILrpyeYepDTVZWlmpra+Xl5dK/FgAAIMlkt9vtzZ187tw59erVS/v373d8EUvSs88+q7179yorK+u62z/xxBPKyMjQoUOHrjvvq6++0q233qq//vWvmjRpUqNz3nzzTT3xxBOqrKyUr69vg/XV1dWqrq52/F1RUaGoqCiVl5crICDgusdvb3V1derevbsuX76sTz/9VLGxsUaXBACAW6ioqFBgYGCzvr9duv0UGhoqi8WikpISp/GSkhJFRERcd9uqqiqlpaVp3rx5NzxO//79FRoaquPHjzc5x2q1qra2VqdOnWp0va+vrwICApwWd2WxWBxPQXELCgCAlnEp1Pj4+Gj06NFKT093jNlsNqWnpztduWnM1q1bVV1drVmzZt3wOGfOnNGFCxfUs2fPJufk5eXJbDYrLCys+SfgxuirAQDg5rjcvJGUlKQ5c+YoLi5O8fHxSklJUVVVlebOnStJmj17tnr16qXk5GSn7VJTUzV16lSFhIQ4jVdWVuqFF17QQw89pIiICJ04cULPPvusBgwYoMTEREnfftFnZWVp4sSJ6tatmzIyMrRs2TLNmjWr0aekOqL6ULN//36DKwEAoGNyOdRMnz5d58+f18qVK1VcXKzY2Fjt2LHD0TxcWFgos9n5AlBBQYH27dunnTt3NtifxWLRoUOHtGnTJl26dEmRkZG6++679fOf/9zRK+Pr66u0tDStXr1a1dXV6tevn5YtW6akpKSWnLNbslqtkqQTJ06otLTUY65AAQDQXlxqFO7IXGk0Msrw4cN15MgR/elPf9J9991ndDkAABiuzRqF0bboqwEAoOUINW6EvhoAAFqOUONG6kPNgQMHdO3aNYOrAQCgYyHUuJEhQ4YoKChIV65cueELCgEAgDNCjRsxm82Ol/BxCwoAANcQatwMzcIAALQMocbNEGoAAGgZQo2bsVqtMplMOnXqlIqKiowuBwCADoNQ42YCAgJ02223SeJqDQAAriDUuCFuQQEA4DpCjRsi1AAA4DpCjRsaP368JOngwYOqqakxuBoAADoGQo0bGjhwoEJCQlRdXa1PP/3U6HIAAOgQCDVuyGQyOV7Cxy0oAACah1DjpuirAQDANYQaN1XfV0OoAQCgeQg1bmrMmDEym806ffq0zpw5Y3Q5AAC4PUKNm+ratatGjhwpias1AAA0B6HGjXELCgCA5iPUuDGahQEAaD5CjRurDzU5OTm6evWqwdUAAODeCDVurH///urRo4euXbum3Nxco8sBAMCtEWrcmMlkoq8GAIBmItS4OfpqAABoHkKNm6sPNfv375fdbje4GgAA3Behxs3FxcXJy8tLRUVFKiwsNLocAADcFqHGzXXp0kWxsbGSuAUFAMD1EGo6APpqAAC4MUJNB/D9vhoAANA4Qk0HUB9q8vLydOXKFYOrAQDAPRFqOoC+ffuqZ8+eqq2t1cGDB40uBwAAt0So6QBMJhN9NQAA3ECLQs2GDRsUHR0tPz8/Wa1WZWdnNzl3woQJMplMDZYpU6Y45jz++OMN1k+ePNlpPxcvXtTMmTMVEBCgoKAgzZs3T5WVlS0pv0OirwYAgOtzOdRs2bJFSUlJWrVqlXJzcxUTE6PExESVlpY2On/btm0qKipyLPn5+bJYLJo2bZrTvMmTJzvNe/fdd53Wz5w5U59//rl27dql7du365NPPtHChQtdLb/D+v6VGl7CBwBAQya7i9+QVqtVY8aM0WuvvSZJstlsioqK0pIlS/Tcc8/dcPuUlBStXLlSRUVF8vf3l/TtlZpLly7pj3/8Y6PbHD16VMOGDdOBAwcUFxcnSdqxY4d++MMf6syZM4qMjLzhcSsqKhQYGKjy8nIFBAQ082zdx9WrVxUQEKBr167pxIkT6t+/v9ElAQDQ5lz5/nbpSk1NTY1ycnKUkJDw3Q7MZiUkJDS71yM1NVUzZsxwBJp6e/bsUVhYmAYPHqynnnpKFy5ccKzLyMhQUFCQI9BIUkJCgsxms7Kysho9TnV1tSoqKpyWjszPz0+33367JG5BAQDQGJdCTVlZmerq6hQeHu40Hh4eruLi4htun52drfz8fM2fP99pfPLkyfqP//gPpaen66WXXtLevXt1zz33qK6uTpJUXFyssLAwp228vLwUHBzc5HGTk5MVGBjoWKKiolw5VbdEszAAAE1r16efUlNTNWLECMXHxzuNz5gxQ/fdd59GjBihqVOnavv27Tpw4ID27NnT4mOtWLFC5eXljuX06dM3Wb3xCDUAADTNpVATGhoqi8WikpISp/GSkhJFRERcd9uqqiqlpaVp3rx5NzxO//79FRoaquPHj0uSIiIiGjQi19bW6uLFi00e19fXVwEBAU5LRzd+/HhJ0qFDhzrVk18AADSHS6HGx8dHo0ePVnp6umPMZrMpPT3dcRWhKVu3blV1dbVmzZp1w+OcOXNGFy5cUM+ePSV9e4Xi0qVLysnJccz5+OOPZbPZZLVaXTmFDq13797q3bu36urqdODAAaPLAQDArbh8+ykpKUm//e1vtWnTJh09elRPPfWUqqqqNHfuXEnS7NmztWLFigbbpaamaurUqQoJCXEar6ys1PLly5WZmalTp04pPT1d999/vwYMGKDExERJ0tChQzV58mQtWLBA2dnZ+u///m8tXrxYM2bMaNaTT56EW1AAADTOy9UNpk+frvPnz2vlypUqLi5WbGysduzY4WgeLiwslNnsnJUKCgq0b98+7dy5s8H+LBaLDh06pE2bNunSpUuKjIzU3XffrZ///Ofy9fV1zNu8ebMWL16sSZMmyWw266GHHtIvf/lLV8vv8MaNG6etW7cSagAA+Acuv6emo+ro76mpl5WVpbFjxyokJETnz5+XyWQyuiQAANpMm72nBsYbNWqUfH19deHCBX355ZdGlwMAgNsg1HQw9c3aEn01AAB8H6GmA6JZGACAhgg1HVD9+2oINQAAfIdQ0wHVX6k5fPhwh/9NKwAAWguhpgPq2bOn+vbtK7vdruzsbKPLAQDALRBqOihuQQEA4IxQ00HRLAwAgDNCTQf1/VBjs9kMrgYAAOMRajqomJgY3XLLLbp06ZIKCgqMLgcAAMMRajoob29vjRkzRhK3oAAAkAg1HRp9NQAAfIdQ04HVh5r9+/cbXAkAAMYj1HRg9aHmyJEjunTpkrHFAABgMEJNBxYWFqZbb71VkpSVlWVwNQAAGItQ08HRVwMAwLcINR0cfTUAAHyLUNPB1YearKwsXsIHAOjUCDUd3IgRI+Tv76+KigodOXLE6HIAADAMoaaD8/LyUnx8vCT6agAAnRuhxgPQVwMAAKHGI/AEFAAAhBqPMHbsWElSQUGBLl68aHA1AAAYg1DjAUJDQzVo0CBJUmZmpsHVAABgDEKNh6CvBgDQ2RFqPAR9NQCAzo5Q4yHGjx8vScrOzlZtba3B1QAA0P4INR5i2LBh6tatmyorK5Wfn290OQAAtDtCjYewWCyyWq2SuAUFAOicCDUehL4aAEBnRqjxIPV9NYQaAEBnRKjxIPW3n44fP67S0lKDqwEAoH21KNRs2LBB0dHR8vPzk9VqVXZ2dpNzJ0yYIJPJ1GCZMmVKo/OffPJJmUwmpaSkOI1HR0c32MfatWtbUr7H6t69u4YOHSqJl/ABADofl0PNli1blJSUpFWrVik3N1cxMTFKTExs8srAtm3bVFRU5Fjy8/NlsVg0bdq0BnPff/99ZWZmKjIystF9rVmzxmlfS5YscbV8j8ctKABAZ+VyqFm3bp0WLFiguXPnatiwYdq4caO6dOmiN998s9H5wcHBioiIcCy7du1Sly5dGoSas2fPasmSJdq8ebO8vb0b3Ve3bt2c9uXv7+9q+R6PZmEAQGflUqipqalRTk6OEhISvtuB2ayEhIRmf4mmpqZqxowZToHEZrPpscce0/LlyzV8+PAmt127dq1CQkI0atQovfzyy9d9yVx1dbUqKiqcls6gPtRkZ2fr2rVrBlcDAED7cSnUlJWVqa6uTuHh4U7j4eHhKi4uvuH22dnZys/P1/z5853GX3rpJXl5eWnp0qVNbrt06VKlpaVp9+7deuKJJ/Tiiy/q2WefbXJ+cnKyAgMDHUtUVNQN6/MEQ4YMUVBQkK5cuaJDhw4ZXQ4AAO3Gqz0PlpqaqhEjRig+Pt4xlpOTo1/84hfKzc2VyWRqctukpCTHP48cOVI+Pj564oknlJycLF9f3wbzV6xY4bRNRUVFpwg2ZrNZY8eO1Y4dO5SRkaHRo0cbXRIAAO3CpSs1oaGhslgsKikpcRovKSlRRETEdbetqqpSWlqa5s2b5zT+t7/9TaWlperTp4+8vLzk5eWlr7/+Wj/+8Y8VHR3d5P6sVqtqa2t16tSpRtf7+voqICDAaeks6KsBAHRGLoUaHx8fjR49Wunp6Y4xm82m9PR0xxdpU7Zu3arq6mrNmjXLafyxxx7ToUOHlJeX51giIyO1fPly/eUvf2lyf3l5eTKbzQoLC3PlFDqF+n8X+/fvN7gSAADaj8u3n5KSkjRnzhzFxcUpPj5eKSkpqqqq0ty5cyVJs2fPVq9evZScnOy0XWpqqqZOnaqQkBCn8ZCQkAZj3t7eioiI0ODBgyV9e8UhKytLEydOVLdu3ZSRkaFly5Zp1qxZ6t69u6un4PGsVqtMJpNOnTql4uLiG15FAwDAE7gcaqZPn67z589r5cqVKi4uVmxsrHbs2OFoHi4sLJTZ7HwBqKCgQPv27dPOnTtbVKSvr6/S0tK0evVqVVdXq1+/flq2bJlTzwy+ExAQoNtuu02HDx9WRkaGHnjgAaNLAgCgzZnsdrvd6CLaQ0VFhQIDA1VeXt4p+mueeOIJvf7661q+fLn+z//5P0aXAwBAi7jy/c1vP3ko+moAAJ0NocZD1YeagwcPqqamxuBqAABoe4QaDzVo0CAFBwerurpaeXl5RpcDAECbI9R4KJPJxPtqAACdCqHGg9FXAwDoTAg1HowrNQCAzoRQ48Hi4+NlNpt1+vRpnT171uhyAABoU4QaD9a1a1eNHDlSEldrAACej1Dj4eirAQB0FoQaD0dfDQCgsyDUeLjx48dLknJzc1VdXW1wNQAAtB1CjYfr37+/evTooZqaGuXm5hpdDgAAbYZQ4+G+/xI++moAAJ6MUNMJ0FcDAOgMCDWdQH1fTUZGhux2u8HVAADQNgg1nUBcXJy8vLx07tw5FRYWGl0OAABtglDTCXTp0kUxMTGSuAUFAPBchJpOgr4aAICnI9R0Et/vqwEAwBMRajqJ+is1n376qa5cuWJwNQAAtD5CTSfRt29fRUREqLa2VgcPHjS6HAAAWh2hppMwmUzcggIAeDRCTSdCszAAwJMRajqR7/9cAi/hAwB4GkJNJzJ69Gh5e3urtLRUJ0+eNLocAABaFaGmE/Hz89Ptt98uiVtQAADPQ6jpZOirAQB4KkJNJ/P9vhoAADwJoaaTqQ81hw4dUlVVlcHVAADQegg1nUxUVJR69+6turo6HThwwOhyAABoNYSaToi+GgCAJyLUdEL01QAAPFGLQs2GDRsUHR0tPz8/Wa1WZWdnNzl3woQJMplMDZYpU6Y0Ov/JJ5+UyWRSSkqK0/jFixc1c+ZMBQQEKCgoSPPmzVNlZWVLyu/06kNNZmYmL+EDAHgMl0PNli1blJSUpFWrVik3N1cxMTFKTExUaWlpo/O3bdumoqIix5Kfny+LxaJp06Y1mPv+++8rMzNTkZGRDdbNnDlTn3/+uXbt2qXt27frk08+0cKFC10tH5JGjRolX19flZWV6fjx40aXAwBAq3A51Kxbt04LFizQ3LlzNWzYMG3cuFFdunTRm2++2ej84OBgRUREOJZdu3apS5cuDULN2bNntWTJEm3evFne3t5O644ePaodO3bojTfekNVq1R133KFXX31VaWlpOnfunKun0On5+vpq9OjRkuirAQB4DpdCTU1NjXJycpSQkPDdDsxmJSQkNPvLMTU1VTNmzJC/v79jzGaz6bHHHtPy5cs1fPjwBttkZGQoKChIcXFxjrGEhASZzWZlZWU1epzq6mpVVFQ4LfgOfTUAAE/jUqgpKytTXV2dwsPDncbDw8NVXFx8w+2zs7OVn5+v+fPnO42/9NJL8vLy0tKlSxvdrri4WGFhYU5jXl5eCg4ObvK4ycnJCgwMdCxRUVE3rK8z4QkoAICnadenn1JTUzVixAjFx8c7xnJycvSLX/xCv/vd72QymVrtWCtWrFB5ebljOX36dKvt2xPUh5r8/HxdvnzZ4GoAALh5LoWa0NBQWSwWlZSUOI2XlJQoIiLiuttWVVUpLS1N8+bNcxr/29/+ptLSUvXp00deXl7y8vLS119/rR//+MeKjo6WJEVERDRoRK6trdXFixebPK6vr68CAgKcFnwnMjJSffv2lc1mu+7TawAAdBQuhRofHx+NHj1a6enpjjGbzab09HTHf/k3ZevWraqurtasWbOcxh977DEdOnRIeXl5jiUyMlLLly/XX/7yF0nfXlW4dOmScnJyHNt9/PHHstlsslqtrpwCvoe+GgCAJ/FydYOkpCTNmTNHcXFxio+PV0pKiqqqqjR37lxJ0uzZs9WrVy8lJyc7bZeamqqpU6cqJCTEaTwkJKTBmLe3tyIiIjR48GBJ0tChQzV58mQtWLBAGzdu1LVr17R48WLNmDGj0ce/0Tzjxo1TWloafTUAAI/gcqiZPn26zp8/r5UrV6q4uFixsbHasWOHo3m4sLBQZrPzBaCCggLt27dPO3fubHGhmzdv1uLFizVp0iSZzWY99NBD+uUvf9ni/UEaP368pG9fwmez2Rr8ewMAoCMx2TvJK2UrKioUGBio8vJy+mv+v2vXrikwMFBXrlzR0aNHNWTIEKNLAgDAiSvf3/yneSfm7e3tePcPfTUAgI6OUNPJ8b4aAICnINR0cvV9NYQaAEBHR6jp5Oqv1Hz++ee6dOmSscUAAHATCDWdXFhYmPr37y9JTf6OFgAAHQGhBtyCAgB4BEINaBYGAHgEQg0coab+JXwAAHREhBpoxIgR8vf3V0VFhY4cOWJ0OQAAtAihBvLy8lJ8fLwkbkEBADouQg0k0VcDAOj4CDWQ9F2o4ecSAAAdFaEGkqSxY8dK+vYX1S9evGhwNQAAuI5QA0lSaGioBg0aJOnbp6AAAOhoCDVwoK8GANCREWrgQF8NAKAjI9TAoT7UZGdnq66uzuBqAABwDaEGDsOHD1e3bt1UWVmp/Px8o8sBAMAlhBo4WCwWWa1WSfTVAAA6HkINnNBXAwDoqAg1cMITUACAjopQAyf1L+E7fvy4zp8/b3A1AAA0H6EGTrp3766hQ4dK4iV8AICOhVCDBuirAQB0RIQaNEBfDQCgIyLUoIHx48dLkg4cOKDa2lqDqwEAoHkINWhgyJAhCgoK0jfffKNDhw4ZXQ4AAM1CqEEDZrPZ8RI++moAAB0FoQaNoq8GANDREGrQqPq+GkINAKCjINSgUVarVSaTSSdPnlRxcbHR5QAAcEOEGjQqICBAw4cPl8TVGgBAx9CiULNhwwZFR0fLz89PVqtV2dnZTc6dMGGCTCZTg2XKlCmOOatXr9aQIUPk7++v7t27KyEhQVlZWU77iY6ObrCPtWvXtqR8NBN9NQCAjsTlULNlyxYlJSVp1apVys3NVUxMjBITE1VaWtro/G3btqmoqMix5Ofny2KxaNq0aY45gwYN0muvvabDhw9r3759io6O1t13393gt4fWrFnjtK8lS5a4Wj5cQF8NAKAjMdntdrsrG1itVo0ZM0avvfaaJMlmsykqKkpLlizRc889d8PtU1JStHLlShUVFcnf37/RORUVFQoMDNRf//pXTZo0SdK3V2qeeeYZPfPMM66U22Cf5eXlCggIaNE+OpuCggINGTJEfn5+Ki8vl4+Pj9ElAQA6GVe+v126UlNTU6OcnBwlJCR8twOzWQkJCc3+r/nU1FTNmDGjyUBTU1Oj119/XYGBgYqJiXFat3btWoWEhGjUqFF6+eWXr/u22+rqalVUVDgtcM2gQYMUHBysq1evKi8vz+hyAAC4LpdCTVlZmerq6hQeHu40Hh4e3qwnZLKzs5Wfn6/58+c3WLd9+3Z17dpVfn5+Wr9+vXbt2qXQ0FDH+qVLlyotLU27d+/WE088oRdffFHPPvtsk8dKTk5WYGCgY4mKinLhTCFJJpOJvhoAQIfRrk8/paamasSIEYqPj2+wbuLEicrLy9P+/fs1efJkPfLII059OklJSZowYYJGjhypJ598Uq+88opeffVVVVdXN3qsFStWqLy83LGcPn26zc7LkxFqAAAdhUuhJjQ0VBaLRSUlJU7jJSUlioiIuO62VVVVSktL07x58xpd7+/vrwEDBmjs2LFKTU2Vl5eXUlNTm9yf1WpVbW2tTp061eh6X19fBQQEOC1wXX2o4ecSAADuzqVQ4+Pjo9GjRys9Pd0xZrPZlJ6e7vjya8rWrVtVXV2tWbNmNetYNputyaswkpSXlyez2aywsLDmFY8WiY+Pl9ls1unTp3X27FmjywEAoEku335KSkrSb3/7W23atElHjx7VU089paqqKs2dO1eSNHv2bK1YsaLBdqmpqZo6dapCQkKcxquqqvSzn/1MmZmZ+vrrr5WTk6N//dd/1dmzZx2PfWdkZCglJUWfffaZvvrqK23evFnLli3TrFmz1L1795acN5qpa9euGjlypCRuQQEA3JuXqxtMnz5d58+f18qVK1VcXKzY2Fjt2LHD0TxcWFgos9k5KxUUFGjfvn3auXNng/1ZLBYdO3ZMmzZtUllZmUJCQjRmzBj97W9/c7zR1tfXV2lpaVq9erWqq6vVr18/LVu2TElJSS05Z7ho3LhxysvLU0ZGhh5++GGjywEAoFEuv6emo+I9NS33+9//XrNnz9bYsWO5WgMAaFdt9p4adE71/VK5ubnX7XMCAMBIhBrc0K233qoePXqopqZGubm5RpcDAECjCDW4IV7CBwDoCAg1aBbeVwMAcHeEGjTL96/UdJLecgBAB0OoQbOMGTNGFotF586d4ycnAABuiVCDZunSpYtiY2Ml0VcDAHBPhBo0G301AAB3RqhBs/EEFADAnRFq0Gzjx4+XJH366ae6cuWKwdUAAOCMUINm69u3ryIiIlRbW6ucnByjywEAwAmhBs32/Zfw0VcDAHA3hBq4hL4aAIC7ItTAJfV9NbyEDwDgbgg1cMno0aPl7e2tkpISnTp1yuhyAABwINTAJX5+fho1apQk+moAAO6FUAOX0VcDAHBHhBq47Pt9NQAAuAtCDVxWf6Xms88+U1VVlcHVAADwLUINXBYVFaVevXqprq5OBw4cMLocAAAkEWrQQvTVAADcDaEGLUJfDQDA3RBq0CLfv1LDS/gAAO6AUIMWGTVqlHx8fFRWVqbjx48bXQ4AAIQatIyvr6/i4uIkcQsKAOAeCDVoMZqFAQDuhFCDFqsPNfxcAgDAHRBq0GL1oSY/P1+XL182uBoAQGdHqEGLRUZGqm/fvrLZbMrOzja6HABAJ0eowU2hrwYA4C4INbgp9NUAANwFoQY3pT7UZGZmymazGVwNAKAza1Go2bBhg6Kjo+Xn5yer1XrdfooJEybIZDI1WKZMmeKYs3r1ag0ZMkT+/v7q3r27EhISlJWV5bSfixcvaubMmQoICFBQUJDmzZunysrKlpSPVhQbG6tbbrlFf//73/XFF18YXQ4AoBNzOdRs2bJFSUlJWrVqlXJzcxUTE6PExESVlpY2On/btm0qKipyLPn5+bJYLJo2bZpjzqBBg/Taa6/p8OHD2rdvn6Kjo3X33Xfr/PnzjjkzZ87U559/rl27dmn79u365JNPtHDhwhacMlqTt7c3L+EDALgHu4vi4+PtixYtcvxdV1dnj4yMtCcnJzdr+/Xr19u7detmr6ysbHJOeXm5XZL9r3/9q91ut9uPHDlil2Q/cOCAY85HH31kN5lM9rNnzzbruPX7LC8vb9Z8NN+zzz5rl2SfP3++0aUAADyMK9/fLl2pqampUU5OjhISEhxjZrNZCQkJzf6v9NTUVM2YMUP+/v5NHuP1119XYGCgYmJiJH17BSAoKMhxRUCSEhISZDabG9ymqlddXa2KigqnBW2DJ6AAAO7ApVBTVlamuro6hYeHO42Hh4eruLj4httnZ2crPz9f8+fPb7Bu+/bt6tq1q/z8/LR+/Xrt2rVLoaGhkqTi4mKFhYU5zffy8lJwcHCTx01OTlZgYKBjiYqKau5pwkX1oebIkSMqLy83uBoAQGfVrk8/paamasSIEYqPj2+wbuLEicrLy9P+/fs1efJkPfLII0326TTHihUrVF5e7lhOnz59M6XjOsLDw9W/f3/Z7fYmr5wBANDWXAo1oaGhslgsKikpcRovKSlRRETEdbetqqpSWlqa5s2b1+h6f39/DRgwQGPHjlVqaqq8vLyUmpoqSYqIiGgQcGpra3Xx4sUmj+vr66uAgACnBW2H99UAAIzmUqjx8fHR6NGjlZ6e7hiz2WxKT093fKk1ZevWraqurtasWbOadSybzabq6mpJ335hXrp0STk5OY71H3/8sWw2m6xWqyungDZCXw0AwGherm6QlJSkOXPmKC4uTvHx8UpJSVFVVZXmzp0rSZo9e7Z69eql5ORkp+1SU1M1depUhYSEOI1XVVXp3//933XfffepZ8+eKisr04YNG3T27FnHY99Dhw7V5MmTtWDBAm3cuFHXrl3T4sWLNWPGDEVGRrb03NGKxo8fL0nKysqSzWaT2cx7HQEA7cvlUDN9+nSdP39eK1euVHFxsWJjY7Vjxw5H83BhYWGDL7SCggLt27dPO3fubLA/i8WiY8eOadOmTSorK1NISIjGjBmjv/3tbxo+fLhj3ubNm7V48WJNmjRJZrNZDz30kH75y1+6Wj7ayIgRI+Tv76/y8nIdPXrU6d8dAADtwWS32+1GF9EeKioqFBgYqPLycvpr2sjEiRO1Z88evf7661qwYIHR5QAAPIAr39/cI0Croa8GAGAkQg1aTX1fDaEGAGAEQg1azdixYyVJx44d08WLFw2uBgDQ2RBq0GpCQ0M1cOBASVJmZqbB1QAAOhtCDVoVfTUAAKMQatCq6KsBABiFUINWVX+lJisrS3V1dQZXAwDoTAg1aFXDhw9Xt27dVFlZqfz8fKPLAQB0IoQatCqLxeL4PS5uQQEA2hOhBq2OZmEAgBEINWh1hBoAgBEINWh19S/h+/LLL3X+/HmDqwEAdBaEGrS67t27a+jQoZJ4CR8AoP0QatAmuAUFAGhvhBq0ifpQs3//foMrAQB0FoQatIn6UHPgwAHV1tYaXA0AoDMg1KBNDB06VIGBgfrmm2906NAho8sBAHQChBq0CbPZ7HgKir4aAEB7INSgzdBXAwBoT4QatBmegAIAtCdCDdqM1WqVyWTSyZMnVVJSYnQ5AAAPR6hBmwkMDNTw4cMlcbUGAND2CDVoU/TVAADaC6EGbYq+GgBAeyHUoE2NHz9eknTw4EHV1NQYXA0AwJMRatCmBg0apODgYF29elWfffaZ0eUAADwYoQZtymQyOV7CR18NAKAtEWrQ5uirAQC0B0IN2lx9Xw2hBgDQlgg1aHPx8fEym80qLCzU2bNnjS4HAOChCDVoc127dtWIESMkcbUGANB2CDVoF/TVAADaWotCzYYNGxQdHS0/Pz9ZrVZlZ2c3OXfChAkymUwNlilTpkiSrl27pp/+9KcaMWKE/P39FRkZqdmzZ+vcuXNO+4mOjm6wj7Vr17akfBiAvhoAQFtzOdRs2bJFSUlJWrVqlXJzcxUTE6PExESVlpY2On/btm0qKipyLPn5+bJYLJo2bZok6ZtvvlFubq6ef/555ebmatu2bSooKNB9993XYF9r1qxx2teSJUtcLR8Gqb9Sk5OTo+rqaoOrAQB4Ii9XN1i3bp0WLFiguXPnSpI2btyoP//5z3rzzTf13HPPNZgfHBzs9HdaWpq6dOniCDWBgYHatWuX05zXXntN8fHxKiwsVJ8+fRzj3bp1U0REhKslww3ceuutCg0NVVlZmXJzcx0hBwCA1uLSlZqamhrl5OQoISHhux2YzUpISGj2bYXU1FTNmDFD/v7+Tc4pLy+XyWRSUFCQ0/jatWsVEhKiUaNG6eWXX1ZtbW2T+6iurlZFRYXTAuOYTCb6agAAbcqlKzVlZWWqq6tTeHi403h4eLiOHTt2w+2zs7OVn5+v1NTUJudcvXpVP/3pT/Xoo48qICDAMb506VLdfvvtCg4O1v79+7VixQoVFRVp3bp1je4nOTlZL7zwQjPPDO1h/Pjx+vDDD7V792499NBDRpcDAGhlfn5+DTJCu7K74OzZs3ZJ9v379zuNL1++3B4fH3/D7RcuXGgfMWJEk+tramrs9957r33UqFH28vLy6+4rNTXV7uXlZb969Wqj669evWovLy93LKdPn7ZLuuF+0Xb27Nljl8TCwsLC4qFLYmJiq393lJeX26XmfX+7dKUmNDRUFotFJSUlTuMlJSU37HWpqqpSWlqa1qxZ0+j6a9eu6ZFHHtHXX3+tjz/+2OkqTWOsVqtqa2t16tQpDR48uMF6X19f+fr63uCM0J7Gjh2rcePG6dNPPzW6FABAG/Dx8TH0+C6FGh8fH40ePVrp6emaOnWqJMlmsyk9PV2LFy++7rZbt25VdXW1Zs2a1WBdfaD58ssvtXv3boWEhNywlry8PJnNZoWFhblyCjCQr68vP2oJAGgzLj/9lJSUpDlz5iguLk7x8fFKSUlRVVWV42mo2bNnq1evXkpOTnbaLjU1VVOnTm0QWK5du6aHH35Yubm52r59u+rq6lRcXCzp2yenfHx8lJGRoaysLE2cOFHdunVTRkaGli1bplmzZql79+4tPXcAAOBBXA4106dP1/nz57Vy5UoVFxcrNjZWO3bscDQGFRYWymx2fqiqoKBA+/bt086dOxvs7+zZs/rggw8kSbGxsU7rdu/erQkTJsjX11dpaWlavXq1qqur1a9fPy1btkxJSUmulg8AADyUyW63240uoj1UVFQoMDBQ5eXlN+zXAQAA7sGV729++wkAAHgEQg0AAPAIhBoAAOARCDUAAMAjEGoAAIBHINQAAACPQKgBAAAegVADAAA8AqEGAAB4BEINAADwCIQaAADgEVz+QcuOqv4nrioqKgyuBAAANFf993Zzfqqy04Say5cvS5KioqIMrgQAALjq8uXLCgwMvO6cTvMr3TabTefOnVO3bt1kMpladd8VFRWKiorS6dOn+QXwG+Czaj4+q+bjs2o+PivX8Hk1X1t9Vna7XZcvX1ZkZKTM5ut3zXSaKzVms1m9e/du02MEBATwP/pm4rNqPj6r5uOzaj4+K9fweTVfW3xWN7pCU49GYQAA4BEINQAAwCMQalqBr6+vVq1aJV9fX6NLcXt8Vs3HZ9V8fFbNx2flGj6v5nOHz6rTNAoDAADPxpUaAADgEQg1AADAIxBqAACARyDUAAAAj0CouUkbNmxQdHS0/Pz8ZLValZ2dbXRJbumTTz7Rvffeq8jISJlMJv3xj380uiS3lZycrDFjxqhbt24KCwvT1KlTVVBQYHRZbunXv/61Ro4c6XjZ17hx4/TRRx8ZXVaHsHbtWplMJj3zzDNGl+J2Vq9eLZPJ5LQMGTLE6LLc1tmzZzVr1iyFhITolltu0YgRI3Tw4EFDaiHU3IQtW7YoKSlJq1atUm5urmJiYpSYmKjS0lKjS3M7VVVViomJ0YYNG4wuxe3t3btXixYtUmZmpnbt2qVr167p7rvvVlVVldGluZ3evXtr7dq1ysnJ0cGDB/U//sf/0P3336/PP//c6NLc2oEDB/Sb3/xGI0eONLoUtzV8+HAVFRU5ln379hldklv6+9//rh/84Afy9vbWRx99pCNHjuiVV15R9+7djSnIjhaLj4+3L1q0yPF3XV2dPTIy0p6cnGxgVe5Pkv399983uowOo7S01C7JvnfvXqNL6RC6d+9uf+ONN4wuw21dvnzZPnDgQPuuXbvsd911l/3pp582uiS3s2rVKntMTIzRZXQIP/3pT+133HGH0WU4cKWmhWpqapSTk6OEhATHmNlsVkJCgjIyMgysDJ6mvLxckhQcHGxwJe6trq5OaWlpqqqq0rhx44wux20tWrRIU6ZMcfr/LjT05ZdfKjIyUv3799fMmTNVWFhodElu6YMPPlBcXJymTZumsLAwjRo1Sr/97W8Nq4dQ00JlZWWqq6tTeHi403h4eLiKi4sNqgqexmaz6ZlnntEPfvAD3XbbbUaX45YOHz6srl27ytfXV08++aTef/99DRs2zOiy3FJaWppyc3OVnJxsdCluzWq16ne/+5127NihX//61zp58qT+6Z/+SZcvXza6NLfz1Vdf6de//rUGDhyov/zlL3rqqae0dOlSbdq0yZB6Os2vdAMd0aJFi5Sfn8/9/OsYPHiw8vLyVF5erj/84Q+aM2eO9u7dS7D5B6dPn9bTTz+tXbt2yc/Pz+hy3No999zj+OeRI0fKarWqb9+++s///E/NmzfPwMrcj81mU1xcnF588UVJ0qhRo5Sfn6+NGzdqzpw57V4PV2paKDQ0VBaLRSUlJU7jJSUlioiIMKgqeJLFixdr+/bt2r17t3r37m10OW7Lx8dHAwYM0OjRo5WcnKyYmBj94he/MLost5OTk6PS0lLdfvvt8vLykpeXl/bu3atf/vKX8vLyUl1dndEluq2goCANGjRIx48fN7oUt9OzZ88G/wExdOhQw27XEWpayMfHR6NHj1Z6erpjzGazKT09nfv5uCl2u12LFy/W+++/r48//lj9+vUzuqQOxWazqbq62ugy3M6kSZN0+PBh5eXlOZa4uDjNnDlTeXl5slgsRpfotiorK3XixAn17NnT6FLczg9+8IMGr5z44osv1LdvX0Pq4fbTTUhKStKcOXMUFxen+Ph4paSkqKqqSnPnzjW6NLdTWVnp9F85J0+eVF5enoKDg9WnTx8DK3M/ixYt0jvvvKM//elP6tatm6NHKzAwULfccovB1bmXFStW6J577lGfPn10+fJlvfPOO9qzZ4/+8pe/GF2a2+nWrVuDvix/f3+FhITQr/UPfvKTn+jee+9V3759de7cOa1atUoWi0WPPvqo0aW5nWXLlmn8+PF68cUX9cgjjyg7O1uvv/66Xn/9dWMKMvrxq47u1Vdftffp08fu4+Njj4+Pt2dmZhpdklvavXu3XVKDZc6cOUaX5nYa+5wk2d966y2jS3M7//qv/2rv27ev3cfHx96jRw/7pEmT7Dt37jS6rA6DR7obN336dHvPnj3tPj4+9l69etmnT59uP378uNFlua0PP/zQftttt9l9fX3tQ4YMsb/++uuG1WKy2+12Y+IUAABA66GnBgAAeARCDQAA8AiEGgAA4BEINQAAwCMQagAAgEcg1AAAAI9AqAEAAB6BUAPA7U2YMEHPPPNMk+ujo6OVkpLSbvUAcE/8TAKADu/AgQPy9/c3ugwABiPUAOjwevToYXQJANwAt58AdAi1tbVavHixAgMDFRoaqueff171v/Lyj7efTCaT3njjDT3wwAPq0qWLBg4cqA8++MCgygG0F0INgA5h06ZN8vLyUnZ2tn7xi19o3bp1euONN5qc/8ILL+iRRx7RoUOH9MMf/lAzZ87UxYsX27FiAO2NUAOgQ4iKitL69es1ePBgzZw5U0uWLNH69eubnP/444/r0Ucf1YABA/Tiiy+qsrJS2dnZ7VgxgPZGqAHQIYwdO1Ymk8nx97hx4/Tll1+qrq6u0fkjR450/LO/v78CAgJUWlra5nUCMA6hBoBH8vb2dvrbZDLJZrMZVA2A9kCoAdAhZGVlOf2dmZmpgQMHymKxGFQRAHdDqAHQIRQWFiopKUkFBQV699139eqrr+rpp582uiwAboT31ADoEGbPnq0rV64oPj5eFotFTz/9tBYuXGh0WQDciMle/6IHAACADozbTwAAwCMQagAAgEcg1AAAAI9AqAEAAB6BUAMAADwCoQYAAHgEQg0AAPAIhBoAAOARCDUAAMAjEGoAAIBHINQAAACPQKgBAAAe4f8B4U68FxAjAFsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHHCAYAAACcHAM1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzOUlEQVR4nO3df1SUdd7/8dcw/BKSMSUBjcSySMtgbxSiPEl3FBWV1L0GlmmuVtutZtFWcvYOa2sj6y5pi9WtJu0uSte0X1aoUbq5qbRQJ2mNfllYCkglo2OBMdf3j75OO8sPGQrmIzwf53zOkc/1+XzmfV1nzszLa665xmZZliUAAACDBQW6AAAAgMMhsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYgH5s2bJlstlsstls2rRpU5vtlmUpPj5eNptNF110UZvte/fuVXh4uGw2m7Zv397uY1x99dXex7DZbAoLC9NJJ52kwsJCff/9923G/+tYm82mqKgoTZw4Ua+88kqH9f/jH/9o97FvvfVW2Ww25ebmdnocduzYoTlz5uikk05SRESEIiIiNGbMGM2ePVvvv/++z9g77rijTY3/2urq6jp9LADdExzoAgAEXnh4uJ555hlNmDDBp3/jxo368ssvFRYW1u68lStXymazKTY2VqWlpbr77rvbHRcWFqbHH39cktTU1KQXX3xRd911lz799FOVlpa2GX/uuedq2rRpsixLX3zxhRYvXqyLL75Yr732mrKysrq0T5Zl6dlnn1VCQoJefvll7du3TwMHDmwzbs2aNcrNzVVwcLCuvPJKJSUlKSgoSB9++KFWr16txYsXa8eOHRoxYoTPvMWLF+uoo45qs96gQYO6VB8AP1kA+q2lS5dakqzLLrvMio6Otg4ePOiz/ZprrrFSUlKsESNGWNnZ2W3mn3XWWdZll11m3XTTTdbIkSPbfYzp06dbkZGRPn0ej8c6/fTTLZvNZtXV1flsk2TNnj3bp++f//ynJcm64IIL2q3/nXfeafO4b7zxhiXJeuONN6yQkBBr2bJlbcZ88sknVmRkpDV69Ghr165dbbYfPHjQeuihh6za2lpv34IFCyxJ1p49e9rdXwA9g4+EAGjKlCn6+uuvtX79em9fS0uLnnvuOV1xxRXtzqmtrdVbb72lvLw85eXlaceOHXr77be79Hg2m00TJkyQZVn67LPPDjt+9OjRio6O1qefftq1HZJUWlqqMWPG6Oyzz1ZmZma7Z3Luu+8+ud1uLV26VHFxcW22BwcH64YbblB8fHyXHxdAzyCwAFBCQoLS09P17LPPevtee+01NTU1KS8vr905zz77rCIjI3XRRRcpNTVVJ5xwQruhoCOff/65JOnoo48+7NimpiZ9++23XRorSc3NzVq1apWmTJki6cdA9sYbb7S5vmTNmjUaNWqU0tLSulz3Id98840aGxt92t69e/1eB0DXEFgASJKuuOIKvfDCC/ruu+8k/XiGYuLEiRo2bFi740tLSzVp0iQNGDBAkpSbm6u//vWv+uGHH9odf+hN/dNPP9UDDzygVatW6dRTT1ViYmKbsd9//70aGxu1Z88eVVZWKi8vT62trfr1r3/dpX1Zs2aN9u7d6w1bOTk5CgkJ0fLly71jXC6Xdu3apVNPPbXN/L179/oEkUPH5F8lJibqmGOO8Wmnn356l+oD4D8CCwBJ0uWXX67vvvtOa9as0b59+7RmzZoOPw56//33tW3bNu8ZDOnHsxiNjY1au3Ztm/Fut9v7pj5q1Cj97ne/05lnnqkXX3xRNputzXin06ljjjlGQ4cO1bhx41ReXq5bb71V+fn5XdqX0tJSjRs3TqNGjZIkDRw4UNnZ2T5ngFwulyS1e+FsRkaGTxApKSlpM2bVqlVav369T1u6dGmX6gPgP74lBECSdMwxxygzM1PPPPOMDhw40OkZjaefflqRkZE6/vjj9cknn0j68ZtGCQkJKi0tVXZ2ts/48PBwvfzyy5KkL7/8Uvfdd58aGhq8Z2f+3aRJkzRnzhy1tLTonXfe0T333KMDBw4oKOjw/8fau3evXn31Vc2ZM8dbmySdeeaZWrVqlT766COddNJJ3m8M7d+/v80af/nLX7Rv3z7V19dr6tSp7T7OWWedpejo6MPWA+CXQWAB4HXFFVfommuuUV1dnS644IJ2v6Jr/f+vC7vdbo0ZM6bN9oaGBu3fv9/nzIXdbldmZqb376ysLJ188sm67rrr9NJLL7VZ49hjj/WOv/DCCxUdHa05c+bo7LPP1mWXXdbpPqxcuVLNzc164IEH9MADD7TZXlpaqjvvvFMOh0NxcXGqrq5uM+bQNS2HrrMBEHh8JATA69JLL1VQUJC2bNnS4cdBh+7N8oc//EErV670aY8++qgOHDigF154odPHiYuL00033aSXX35ZW7ZsOWxd1113nU444QT9z//8jyzL6nRsaWmpTj311Da1rVy50nsG6ZDs7Gx98sknqqioOGwNAAKLMywAvI466igtXrxYn3/+uS6++OJ2xxz6OOiWW25ReHh4m+3333+/SktLO/wo5ZC5c+fq/vvv17333nvYgBMcHKybb75Z//3f/60XX3xROTk57Y7buXOn/va3v+nOO+9s9+OslpYWXXnlldq6davS0tJ066236plnntFvfvMblZeXKyYmxmf84cIRgN5DYAHgY/r06R1uO/R14XPPPbfdsCJJl1xyiR566CE1NDRo6NChHa41ZMgQzZgxQ3/+85+1fft2jR49utO6rr76ahUWFmrhwoUdBpZnnnlGlmXpkksuaXf7hRdeqODgYJWWliotLU0nnniinnnmGU2ZMkWJiYneO91alqUdO3bomWeeUVBQkI499tg2az333HPtXrB77rnntgk+AH4+PhIC0GWvvPKK9u7d2+HZF0m6+OKL9cMPP/h8hbgj+fn5CgoK0sKFCw87dsCAAZozZ462bNmiDRs2tDumtLRUxx13nJKSktrdPmjQIE2YMEErVqzwfv160qRJ2rZtm6644gqtW7dO8+bN00033aQXX3xR2dnZqqqqavdeNNdff72uuuqqNq2j31QC8PPYLM55AgAAw3GGBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeH3mxnEej0e7du3SwIED2/31VwAAYB7LsrRv3z4NGzas0x847TOBZdeuXYqPjw90GQAAoBt27tzZ7l2lD+kzgeXQT8Xv3LlTUVFRAa4GAAB0hcvlUnx8vPd9vCN9JrAc+hgoKiqKwAIAwBHmcJdzcNEtAAAwHoEFAAAYj8ACAACM12euYQEAwEStra06ePBgoMsImJCQENnt9p+9DoEFAIAeYFmW6urqtHfv3kCXEnCDBg1SbGzsz7pPGoEFAIAecCisDB06VBEREf3ypqaWZenAgQNqaGiQJMXFxXV7LQILAAC/sNbWVm9YGTJkSKDLCagBAwZIkhoaGjR06NBufzzERbcAAPzCDl2zEhEREeBKzHDoOPyca3kILAAA9JD++DFQe36J40BgAQAAxiOwAACAnyUhIUHFxcU9+hgEFgAAYDwCCwAAMB6BBQAAeGVkZGjOnDmaM2eOHA6HoqOjdfvtt8uyLEk/fj354osv1oABAzRy5EiVlpb2Sl3dCiwlJSVKSEhQeHi40tLSVFFR0eHYjIwM2Wy2Ni07O9tn3Pbt23XJJZfI4XAoMjJS48ePV21tbXfKAwDAKJZlye12B6QdChr+ePLJJxUcHKyKigo99NBDevDBB/X4449Lkq6++mrt3LlTb775pp577jn9+c9/9t4Yrif5feO4FStWKD8/X0uWLFFaWpqKi4uVlZWlmpoaDR06tM341atXq6Wlxfv3119/raSkJE2ePNnb9+mnn2rChAmaOXOm7rzzTkVFRemDDz5QeHh4N3cLAABzHDhwQEcddVRAHnv//v2KjIz0a058fLwWLVokm82mxMREbdu2TYsWLdLEiRP12muvqaKiQuPHj5ckOZ1OjR49uidK9+H3GZYHH3xQ11xzjWbMmKExY8ZoyZIlioiI0BNPPNHu+MGDBys2Ntbb1q9fr4iICJ/A8vvf/14XXnih7rvvPv3qV7/SCSecoEsuuaTdAAQAAHrW6aef7nPvlPT0dH388cfavn27goODlZKS4t128skna9CgQT1ek19nWFpaWlRZWamCggJvX1BQkDIzM7V58+YureF0OpWXl+dNex6PR6+88opuvfVWZWVl6d1339XIkSNVUFCgnJwcf8oDAMBIERER2r9/f8Aeuy/wK7A0NjaqtbVVMTExPv0xMTH68MMPDzu/oqJC1dXVcjqd3r6Ghgbt379f9957r+6++24tXLhQZWVluuyyy/Tmm29q4sSJ7a7V3Nys5uZm798ul8ufXQEAoNfYbDa/P5YJpK1bt/r8vWXLFp144ok6+eST9cMPP6iystL7kVBNTU2v/CJ1r35LyOl0auzYsUpNTfX2eTweSdKkSZN00003KTk5WfPnz9dFF12kJUuWdLhWUVGRHA6Ht8XHx/d4/QAA9Ae1tbXKz89XTU2Nnn32WT388MOaN2+eEhMTdf755+u6667T1q1bVVlZqVmzZnl/4LAn+RVYoqOjZbfbVV9f79NfX1+v2NjYTue63W4tX75cM2fObLNmcHCwxowZ49M/evToTr8lVFBQoKamJm/buXOnP7sCAAA6MG3aNH333XdKTU3V7NmzNW/ePF177bWSpKVLl2rYsGGaOHGiLrvsMl177bW9cs2pXx8JhYaGKiUlReXl5d7rSzwej8rLyzVnzpxO565cuVLNzc2aOnVqmzXHjx+vmpoan/6PPvpII0aM6HC9sLAwhYWF+VM+AADogpCQEBUXF2vx4sVttsXGxmrNmjU+fVdddVWP1+T315rz8/M1ffp0jRs3TqmpqSouLpbb7daMGTMk/ZjKhg8frqKiIp95TqdTOTk5GjJkSJs1b7nlFuXm5uqss87S2WefrbKyMr388svasGFD9/YKAAD0KX4HltzcXO3Zs0eFhYWqq6tTcnKyysrKvBfi1tbWKijI95Ommpoabdq0SevWrWt3zUsvvVRLlixRUVGRbrjhBiUmJmrVqlWaMGFCN3YJAAD0NTarO7fAM5DL5ZLD4VBTU5OioqICXQ4AoB/7/vvvtWPHDo0cOZKboKrz49HV929+SwgAABiPwAIAQA/pIx9i/Gy/xHEgsAAA8AsLCQmR9ONvCOGn43DouHSH3xfdAgCAztntdg0aNMj7K8YRERE+v83TX1iWpQMHDqihoUGDBg2S3W7v9loEFgAAesChG6oeCi392aBBgw57g9nDIbAAANADbDab4uLiNHToUB08eDDQ5QRMSEjIzzqzcgiBBQCAHmS323+RN+z+jotuAQCA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYr1uBpaSkRAkJCQoPD1daWpoqKio6HJuRkSGbzdamZWdne8dcffXVbbaff/753SkNAAD0QcH+TlixYoXy8/O1ZMkSpaWlqbi4WFlZWaqpqdHQoUPbjF+9erVaWlq8f3/99ddKSkrS5MmTfcadf/75Wrp0qffvsLAwf0sDAAB9lN9nWB588EFdc801mjFjhsaMGaMlS5YoIiJCTzzxRLvjBw8erNjYWG9bv369IiIi2gSWsLAwn3FHH3109/YIAAD0OX4FlpaWFlVWViozM/OnBYKClJmZqc2bN3dpDafTqby8PEVGRvr0b9iwQUOHDlViYqKuv/56ff31152u09zcLJfL5dMAAEDf5FdgaWxsVGtrq2JiYnz6Y2JiVFdXd9j5FRUVqq6u1qxZs3z6zz//fP3f//2fysvLtXDhQm3cuFEXXHCBWltbO1yrqKhIDofD2+Lj4/3ZFQAAcATx+xqWn8PpdGrs2LFKTU316c/Ly/P+e+zYsTrttNN0wgknaMOGDTrnnHPaXaugoED5+fnev10uF6EFAIA+yq8zLNHR0bLb7aqvr/fpr6+vV2xsbKdz3W63li9frpkzZx72cY4//nhFR0frk08+6XBMWFiYoqKifBoAAOib/AosoaGhSklJUXl5ubfP4/GovLxc6enpnc5duXKlmpubNXXq1MM+zpdffqmvv/5acXFx/pQHAAD6KL+/JZSfn6/HHntMTz75pLZv367rr79ebrdbM2bMkCRNmzZNBQUFbeY5nU7l5ORoyJAhPv379+/XLbfcoi1btujzzz9XeXm5Jk2apFGjRikrK6ubuwUAAPoSv69hyc3N1Z49e1RYWKi6ujolJyerrKzMeyFubW2tgoJ8c1BNTY02bdqkdevWtVnPbrfr/fff15NPPqm9e/dq2LBhOu+883TXXXdxLxYAACBJslmWZQW6iF+Cy+WSw+FQU1MT17MAAHCE6Or7N78lBAAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjdSuwlJSUKCEhQeHh4UpLS1NFRUWHYzMyMmSz2dq07Ozsdsf/9re/lc1mU3FxcXdKAwAAfZDfgWXFihXKz8/XggULVFVVpaSkJGVlZamhoaHd8atXr9bu3bu9rbq6Wna7XZMnT24z9vnnn9eWLVs0bNgw//cEAAD0WX4HlgcffFDXXHONZsyYoTFjxmjJkiWKiIjQE0880e74wYMHKzY21tvWr1+viIiINoHlq6++0ty5c1VaWqqQkJDu7Q0AAOiT/AosLS0tqqysVGZm5k8LBAUpMzNTmzdv7tIaTqdTeXl5ioyM9PZ5PB5dddVVuuWWW3TKKad0aZ3m5ma5XC6fBgAA+ia/AktjY6NaW1sVExPj0x8TE6O6urrDzq+oqFB1dbVmzZrl079w4UIFBwfrhhtu6HItRUVFcjgc3hYfH9/luQAA4MjSq98ScjqdGjt2rFJTU719lZWVeuihh7Rs2TLZbLYur1VQUKCmpiZv27lzZ0+UDAAADOBXYImOjpbdbld9fb1Pf319vWJjYzud63a7tXz5cs2cOdOn/6233lJDQ4OOO+44BQcHKzg4WF988YVuvvlmJSQkdLheWFiYoqKifBoAAOib/AosoaGhSklJUXl5ubfP4/GovLxc6enpnc5duXKlmpubNXXqVJ/+q666Su+//77ee+89bxs2bJhuueUWrV271p/yAABAHxXs74T8/HxNnz5d48aNU2pqqoqLi+V2uzVjxgxJ0rRp0zR8+HAVFRX5zHM6ncrJydGQIUN8+ocMGdKmLyQkRLGxsUpMTPS3PAAA0Af5HVhyc3O1Z88eFRYWqq6uTsnJySorK/NeiFtbW6ugIN8TNzU1Ndq0aZPWrVv3y1QNAAD6FZtlWVagi/gluFwuORwONTU1cT0LAABHiK6+f/NbQgAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYr1uBpaSkRAkJCQoPD1daWpoqKio6HJuRkSGbzdamZWdne8fccccdOvnkkxUZGamjjz5amZmZ2rp1a3dKAwAAfZDfgWXFihXKz8/XggULVFVVpaSkJGVlZamhoaHd8atXr9bu3bu9rbq6Wna7XZMnT/aOOemkk/TII49o27Zt2rRpkxISEnTeeedpz5493d8zAADQZ9gsy7L8mZCWlqbx48frkUcekSR5PB7Fx8dr7ty5mj9//mHnFxcXq7CwULt371ZkZGS7Y1wulxwOh15//XWdc845Xarr0JympiZFRUV1fYcAAEDAdPX9268zLC0tLaqsrFRmZuZPCwQFKTMzU5s3b+7SGk6nU3l5eR2GlZaWFj366KNyOBxKSkrqcJ3m5ma5XC6fBgAA+ia/AktjY6NaW1sVExPj0x8TE6O6urrDzq+oqFB1dbVmzZrVZtuaNWt01FFHKTw8XIsWLdL69esVHR3d4VpFRUVyOBzeFh8f78+uAACAI0ivfkvI6XRq7NixSk1NbbPt7LPP1nvvvae3335b559/vi6//PIOr4uRpIKCAjU1NXnbzp07e7J0AAAQQH4FlujoaNntdtXX1/v019fXKzY2ttO5brdby5cv18yZM9vdHhkZqVGjRun000+X0+lUcHCwnE5nh+uFhYUpKirKpwEAgL7Jr8ASGhqqlJQUlZeXe/s8Ho/Ky8uVnp7e6dyVK1equblZU6dO7dJjeTweNTc3+1MeAADoo4L9nZCfn6/p06dr3LhxSk1NVXFxsdxut2bMmCFJmjZtmoYPH66ioiKfeU6nUzk5ORoyZIhPv9vt1h//+EddcskliouLU2Njo0pKSvTVV1/5fPUZAAD0X34HltzcXO3Zs0eFhYWqq6tTcnKyysrKvBfi1tbWKijI98RNTU2NNm3apHXr1rVZz26368MPP9STTz6pxsZGDRkyROPHj9dbb72lU045pZu7BQAA+hK/78NiKu7DAgDAkadH7sMCAAAQCAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMFB7oAk1mWpQMHDgS6DAAAjBARESGbzRaQxyawdOLAgQM66qijAl0GAABG2L9/vyIjIwPy2HwkBAAAjMcZlk5ERERo//79gS4DAAAjREREBOyxCSydsNlsATv1BQAAfsJHQgAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjdSuwlJSUKCEhQeHh4UpLS1NFRUWHYzMyMmSz2dq07OxsSdLBgwd12223aezYsYqMjNSwYcM0bdo07dq1q3t7BAAA+hy/A8uKFSuUn5+vBQsWqKqqSklJScrKylJDQ0O741evXq3du3d7W3V1tex2uyZPnixJOnDggKqqqnT77berqqpKq1evVk1NjS655JKft2cAAKDPsFmWZfkzIS0tTePHj9cjjzwiSfJ4PIqPj9fcuXM1f/78w84vLi5WYWGhdu/ercjIyHbHvPPOO0pNTdUXX3yh4447rkt1uVwuORwONTU1KSoqqus7BAAAAqar799+nWFpaWlRZWWlMjMzf1ogKEiZmZnavHlzl9ZwOp3Ky8vrMKxIUlNTk2w2mwYNGtThmObmZrlcLp8GAAD6Jr8CS2Njo1pbWxUTE+PTHxMTo7q6usPOr6ioUHV1tWbNmtXhmO+//1633XabpkyZ0mnSKioqksPh8Lb4+Piu7wgAADii9Oq3hJxOp8aOHavU1NR2tx88eFCXX365LMvS4sWLO12roKBATU1N3rZz586eKBkAABgg2J/B0dHRstvtqq+v9+mvr69XbGxsp3PdbreWL1+uP/zhD+1uPxRWvvjiC73xxhuHvQ4lLCxMYWFh/pQPAACOUH6dYQkNDVVKSorKy8u9fR6PR+Xl5UpPT+907sqVK9Xc3KypU6e22XYorHz88cd6/fXXNWTIEH/KAgAAfZxfZ1gkKT8/X9OnT9e4ceOUmpqq4uJiud1uzZgxQ5I0bdo0DR8+XEVFRT7znE6ncnJy2oSRgwcP6te//rWqqqq0Zs0atba2eq+HGTx4sEJDQ7u7bwAAoI/wO7Dk5uZqz549KiwsVF1dnZKTk1VWVua9ELe2tlZBQb4nbmpqarRp0yatW7euzXpfffWVXnrpJUlScnKyz7Y333xTGRkZ/pYIAAD6GL/vw2Iq7sMCAMCRp0fuwwIAABAIBBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMF63AktJSYkSEhIUHh6utLQ0VVRUdDg2IyNDNputTcvOzvaOWb16tc477zwNGTJENptN7733XnfKAgAAfZTfgWXFihXKz8/XggULVFVVpaSkJGVlZamhoaHd8atXr9bu3bu9rbq6Wna7XZMnT/aOcbvdmjBhghYuXNj9PQEAAH2WzbIsy58JaWlpGj9+vB555BFJksfjUXx8vObOnav58+cfdn5xcbEKCwu1e/duRUZG+mz7/PPPNXLkSL377rtKTk72pyy5XC45HA41NTUpKirKr7kAACAwuvr+7dcZlpaWFlVWViozM/OnBYKClJmZqc2bN3dpDafTqby8vDZhBQAAoCPB/gxubGxUa2urYmJifPpjYmL04YcfHnZ+RUWFqqur5XQ6/auyHc3NzWpubvb+7XK5fvaaAADATL36LSGn06mxY8cqNTX1Z69VVFQkh8PhbfHx8b9AhQAAwER+BZbo6GjZ7XbV19f79NfX1ys2NrbTuW63W8uXL9fMmTP9r7IdBQUFampq8radO3f+IusCAADz+BVYQkNDlZKSovLycm+fx+NReXm50tPTO527cuVKNTc3a+rUqd2r9N+EhYUpKirKpwEAgL7Jr2tYJCk/P1/Tp0/XuHHjlJqaquLiYrndbs2YMUOSNG3aNA0fPlxFRUU+85xOp3JycjRkyJA2a37zzTeqra3Vrl27JEk1NTWSpNjY2MOeuQEAAH2f34ElNzdXe/bsUWFhoerq6pScnKyysjLvhbi1tbUKCvI9cVNTU6NNmzZp3bp17a750ksveQOPJOXl5UmSFixYoDvuuMPfEgEAQB/j931YTMV9WAAAOPL0yH1YAAAAAoHAAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjdSuwlJSUKCEhQeHh4UpLS1NFRUWHYzMyMmSz2dq07Oxs7xjLslRYWKi4uDgNGDBAmZmZ+vjjj7tTGgAA6IP8DiwrVqxQfn6+FixYoKqqKiUlJSkrK0sNDQ3tjl+9erV2797tbdXV1bLb7Zo8ebJ3zH333ac//elPWrJkibZu3arIyEhlZWXp+++/7/6eAQCAPsNmWZblz4S0tDSNHz9ejzzyiCTJ4/EoPj5ec+fO1fz58w87v7i4WIWFhdq9e7ciIyNlWZaGDRumm2++Wb/73e8kSU1NTYqJidGyZcuUl5fXpbpcLpccDoeampoUFRXlzy4BAIAA6er7t19nWFpaWlRZWanMzMyfFggKUmZmpjZv3tylNZxOp/Ly8hQZGSlJ2rFjh+rq6nzWdDgcSktL63TN5uZmuVwunwYAAPomvwJLY2OjWltbFRMT49MfExOjurq6w86vqKhQdXW1Zs2a5e07NM/fNYuKiuRwOLwtPj7en10BAABHkF79lpDT6dTYsWOVmpr6s9cqKChQU1OTt+3cufMXqBAAAJjIr8ASHR0tu92u+vp6n/76+nrFxsZ2Otftdmv58uWaOXOmT/+hef6uGRYWpqioKJ8GAAD6Jr8CS2hoqFJSUlReXu7t83g8Ki8vV3p6eqdzV65cqebmZk2dOtWnf+TIkYqNjfVZ0+VyaevWrYddEwAA9A/B/k7Iz8/X9OnTNW7cOKWmpqq4uFhut1szZsyQJE2bNk3Dhw9XUVGRzzyn06mcnBwNGTLEp99ms+nGG2/U3XffrRNPPFEjR47U7bffrmHDhiknJ6f7ewYAAPoMvwNLbm6u9uzZo8LCQtXV1Sk5OVllZWXei2Zra2sVFOR74qampkabNm3SunXr2l3z1ltvldvt1rXXXqu9e/dqwoQJKisrU3h4eDd2CQAA9DV+34fFVNyHBQCAI0+P3IcFAAAgEAgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGC8bgWWkpISJSQkKDw8XGlpaaqoqOh0/N69ezV79mzFxcUpLCxMJ510kl599VXv9n379unGG2/UiBEjNGDAAJ1xxhl65513ulMaAADog/wOLCtWrFB+fr4WLFigqqoqJSUlKSsrSw0NDe2Ob2lp0bnnnqvPP/9czz33nGpqavTYY49p+PDh3jGzZs3S+vXr9dRTT2nbtm0677zzlJmZqa+++qr7ewYAAPoMm2VZlj8T0tLSNH78eD3yyCOSJI/Ho/j4eM2dO1fz589vM37JkiW6//779eGHHyokJKTN9u+++04DBw7Uiy++qOzsbG9/SkqKLrjgAt19991dqsvlcsnhcKipqUlRUVH+7BIAAAiQrr5/+3WGpaWlRZWVlcrMzPxpgaAgZWZmavPmze3Oeemll5Senq7Zs2crJiZGp556qu655x61trZKkn744Qe1trYqPDzcZ96AAQO0adOmDmtpbm6Wy+XyaQAAoG/yK7A0NjaqtbVVMTExPv0xMTGqq6trd85nn32m5557Tq2trXr11Vd1++2364EHHvCeORk4cKDS09N11113adeuXWptbdXTTz+tzZs3a/fu3R3WUlRUJIfD4W3x8fH+7AoAADiC9Pi3hDwej4YOHapHH31UKSkpys3N1e9//3stWbLEO+app56SZVkaPny4wsLC9Kc//UlTpkxRUFDH5RUUFKipqcnbdu7c2dO7AgAAAiTYn8HR0dGy2+2qr6/36a+vr1dsbGy7c+Li4hQSEiK73e7tGz16tOrq6tTS0qLQ0FCdcMIJ2rhxo9xut1wul+Li4pSbm6vjjz++w1rCwsIUFhbmT/kAAOAI5dcZltDQUKWkpKi8vNzb5/F4VF5ervT09HbnnHnmmfrkk0/k8Xi8fR999JHi4uIUGhrqMzYyMlJxcXH69ttvtXbtWk2aNMmf8gAAQB/l90dC+fn5euyxx/Tkk09q+/btuv766+V2uzVjxgxJ0rRp01RQUOAdf/311+ubb77RvHnz9NFHH+mVV17RPffco9mzZ3vHrF27VmVlZdqxY4fWr1+vs88+WyeffLJ3TQAA0L/59ZGQJOXm5mrPnj0qLCxUXV2dkpOTVVZW5r0Qt7a21ufak/j4eK1du1Y33XSTTjvtNA0fPlzz5s3Tbbfd5h3T1NSkgoICffnllxo8eLD+67/+S3/84x/b/Ro0AADof/y+D4upuA8LAABHnh65DwsAAEAgEFgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxgsOdAG/FMuyJEkulyvAlQAAgK469L596H28I30msOzbt0+SFB8fH+BKAACAv/bt2yeHw9Hhdpt1uEhzhPB4PNq1a5cGDhwom832i63rcrkUHx+vnTt3Kioq6hdbty/iWHUdx8o/HK+u41h1Hceq63ryWFmWpX379mnYsGEKCur4SpU+c4YlKChIxx57bI+tHxUVxRO6izhWXcex8g/Hq+s4Vl3Hseq6njpWnZ1ZOYSLbgEAgPEILAAAwHgElsMICwvTggULFBYWFuhSjMex6jqOlX84Xl3Hseo6jlXXmXCs+sxFtwAAoO/iDAsAADAegQUAABiPwAIAAIxHYAEAAMYjsEgqKSlRQkKCwsPDlZaWpoqKik7Hr1y5UieffLLCw8M1duxYvfrqq71UaeD5c6yWLVsmm83m08LDw3ux2sD529/+posvvljDhg2TzWbTCy+8cNg5GzZs0H/8x38oLCxMo0aN0rJly3q8ThP4e6w2bNjQ5nlls9lUV1fXOwUHUFFRkcaPH6+BAwdq6NChysnJUU1NzWHn9cfXrO4cq/76mrV48WKddtpp3pvCpaen67XXXut0TiCeU/0+sKxYsUL5+flasGCBqqqqlJSUpKysLDU0NLQ7/u2339aUKVM0c+ZMvfvuu8rJyVFOTo6qq6t7ufLe5++xkn68K+Lu3bu97YsvvujFigPH7XYrKSlJJSUlXRq/Y8cOZWdn6+yzz9Z7772nG2+8UbNmzdLatWt7uNLA8/dYHVJTU+Pz3Bo6dGgPVWiOjRs3avbs2dqyZYvWr1+vgwcP6rzzzpPb7e5wTn99zerOsZL652vWscceq3vvvVeVlZX6xz/+of/8z//UpEmT9MEHH7Q7PmDPKaufS01NtWbPnu39u7W11Ro2bJhVVFTU7vjLL7/cys7O9ulLS0uzrrvuuh6t0wT+HqulS5daDoejl6ozlyTr+eef73TMrbfeap1yyik+fbm5uVZWVlYPVmaerhyrN99805Jkffvtt71Sk8kaGhosSdbGjRs7HNOfX7P+VVeOFa9ZPzn66KOtxx9/vN1tgXpO9eszLC0tLaqsrFRmZqa3LygoSJmZmdq8eXO7czZv3uwzXpKysrI6HN9XdOdYSdL+/fs1YsQIxcfHd5rY+7v++rz6OZKTkxUXF6dzzz1Xf//73wNdTkA0NTVJkgYPHtzhGJ5bP+rKsZJ4zWptbdXy5cvldruVnp7e7phAPaf6dWBpbGxUa2urYmJifPpjYmI6/Dy8rq7Or/F9RXeOVWJiop544gm9+OKLevrpp+XxeHTGGWfoyy+/7I2SjygdPa9cLpe+++67AFVlpri4OC1ZskSrVq3SqlWrFB8fr4yMDFVVVQW6tF7l8Xh044036swzz9Spp57a4bj++pr1r7p6rPrza9a2bdt01FFHKSwsTL/97W/1/PPPa8yYMe2ODdRzqs/8WjPMk56e7pPQzzjjDI0ePVp/+ctfdNdddwWwMhzJEhMTlZiY6P37jDPO0KeffqpFixbpqaeeCmBlvWv27Nmqrq7Wpk2bAl2K8bp6rPrza1ZiYqLee+89NTU16bnnntP06dO1cePGDkNLIPTrMyzR0dGy2+2qr6/36a+vr1dsbGy7c2JjY/0a31d051j9u5CQEP3qV7/SJ5980hMlHtE6el5FRUVpwIABAarqyJGamtqvnldz5szRmjVr9Oabb+rYY4/tdGx/fc06xJ9j9e/602tWaGioRo0apZSUFBUVFSkpKUkPPfRQu2MD9Zzq14ElNDRUKSkpKi8v9/Z5PB6Vl5d3+Nldenq6z3hJWr9+fYfj+4ruHKt/19raqm3btikuLq6nyjxi9dfn1S/lvffe6xfPK8uyNGfOHD3//PN64403NHLkyMPO6a/Pre4cq3/Xn1+zPB6Pmpub290WsOdUj17SewRYvny5FRYWZi1btsz65z//aV177bXWoEGDrLq6OsuyLOuqq66y5s+f7x3/97//3QoODrb+93//19q+fbu1YMECKyQkxNq2bVugdqHX+Hus7rzzTmvt2rXWp59+alVWVlp5eXlWeHi49cEHHwRqF3rNvn37rHfffdd69913LUnWgw8+aL377rvWF198YVmWZc2fP9+66qqrvOM/++wzKyIiwrrlllus7du3WyUlJZbdbrfKysoCtQu9xt9jtWjRIuuFF16wPv74Y2vbtm3WvHnzrKCgIOv1118P1C70muuvv95yOBzWhg0brN27d3vbgQMHvGN4zfpRd45Vf33Nmj9/vrVx40Zrx44d1vvvv2/Nnz/fstls1rp16yzLMuc51e8Di2VZ1sMPP2wdd9xxVmhoqJWammpt2bLFu23ixInW9OnTfcb/9a9/tU466SQrNDTUOuWUU6xXXnmllysOHH+O1Y033ugdGxMTY1144YVWVVVVAKrufYe+evvv7dDxmT59ujVx4sQ2c5KTk63Q0FDr+OOPt5YuXdrrdQeCv8dq4cKF1gknnGCFh4dbgwcPtjIyMqw33ngjMMX3svaOkySf5wqvWT/qzrHqr69Zv/nNb6wRI0ZYoaGh1jHHHGOdc8453rBiWeY8p2yWZVk9ew4HAADg5+nX17AAAIAjA4EFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAZWRkaEbb7yxw+0JCQkqLi7utXoAmIlfawZgtHfeeUeRkZGBLgNAgBFYABjtmGOOCXQJAAzAR0IAAu6HH37QnDlz5HA4FB0drdtvv12HfjXk3z8Sstlsevzxx3XppZcqIiJCJ554ol566aUAVQ6gtxBYAATck08+qeDgYFVUVOihhx7Sgw8+qMcff7zD8Xfeeacuv/xyvf/++7rwwgt15ZVX6ptvvunFigH0NgILgICLj4/XokWLlJiYqCuvvFJz587VokWLOhx/9dVXa8qUKRo1apTuuece7d+/XxUVFb1YMYDeRmABEHCnn366bDab9+/09HR9/PHHam1tbXf8aaed5v13ZGSkoqKi1NDQ0ON1AggcAguAI05ISIjP3zabTR6PJ0DVAOgNBBYAAbd161afv7ds2aITTzxRdrs9QBUBMA2BBUDA1dbWKj8/XzU1NXr22Wf18MMPa968eYEuC4BBuA8LgICbNm2avvvuO6Wmpsput2vevHm69tprA10WAIPYrEM3OwAAADAUHwkBAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYLz/B2ptMp/1qRbxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHHCAYAAACcHAM1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAu3UlEQVR4nO3df1TUZd7/8dcwwCAoo0IOYBSWplkK3QjE5m52x0otu2VtBp1MY7U2bzWL7jY5e8S2raj2ZFS6cVdTeW+c8LYbN6sNNSrPeq+K4XoXeyfZrgWb/FBLRlHBmM/3jz1O31lAGRLmEp+Pc65z5Ppc18X7c53xzOt85jMfbJZlWQIAADBYSLALAAAAOBUCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFwID77W9/K5vNpoyMjB7HtLS0aMmSJZo0aZKGDh2qiIgIjR07Vvn5+dq8ebPf2FdeeUU2m63HtnXr1v4+JQD9LDTYBQA4+5SVlSkpKUnV1dX67LPPNHbsWL/j1dXVysnJ0aFDh5SXl6e77rpLDodDe/bs0e9//3u98sor2rRpk37wgx/4zXvooYc0ZsyYLr/vn9cHcOYhsAAYUHv27NGf/vQnVVRU6Oc//7nKysq0bNky3/Gvv/5aM2bMUGhoqHbu3KkJEyb4zX/44YdVXl6uIUOGdFn72muv1ZQpU/r9HAAMPD4SAjCgysrKNGLECOXk5Oimm25SWVmZ3/HS0lI1NjaqpKSkS1iRJJvNpltuuUVpaWkDVTIAAxBYAAyosrIy3XjjjQoPD9ctt9yi3bt3a/v27b7jb775poYMGaIbb7wx4LVbW1u1f/9+v3bgwIHTWT6AIOEjIQADpqamRrt27dKzzz4rSZo6darOPfdclZWV+a6Y7Nq1S+PHj1dYWJjf3EOHDqm9vd3385AhQxQVFeU3Jisrq8vvdDgcOnbs2Ok+FQADjMACYMCUlZXJ5XLpqquukvSPj3dyc3P16quv6sknn5TdbpfH49HQoUO7zL3tttv0xhtv+H5esGCBVqxY4Tdm5cqVuuiii/z67HZ7P5wJgIFGYAEwIDo7O1VeXq6rrrpKe/bs8fVnZGToySefVFVVlaZPn65hw4bp8OHDXeY/9NBDWrhwoSTphz/8Ybe/Iz09nZtugUGKwAJgQLz33ntqbGxUeXm5ysvLuxwvKyvT9OnTNWHCBP3v//6vjh8/7vex0OTJkweyXACGIbAAGBBlZWUaNWqUVq5c2eVYRUWF1q5dq9LSUv34xz/W1q1btXbtWt18881BqBSAiQgsAPrd0aNHVVFRoZkzZ+qmm27qcjwhIUGvvfaa1q1bp/nz5+vZZ5/Vvffeq5SUlC73pFiWNVBlAzAIgQVAv1u3bp0OHTqk6667rtvjl19+uc455xyVlZUpNzdXa9eu1U9+8hMlJycrLy9PaWlpCgsLU0NDg9asWSNJOu+887qs884772jXrl1d+r/3ve/pggsuOL0nBWBAEVgA9LuysjJFRET0eLNsSEiIcnJyVFZWpgMHDigzM1O1tbVavny53n77ba1evVper1ejR4/W1KlT9fzzz+v73/9+l3WKioq6Xf/ll18msABnOJvF9VUAAGA4nnQLAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGC8QfMcFq/Xq71792rYsGGy2WzBLgcAAPSCZVk6dOiQEhISFBLS83WUQRNY9u7dq8TExGCXAQAA+qChoUHnnntuj8cHTWAZNmyYpH+ccHR0dJCrAQAAveHxeJSYmOh7H+/JoAksJz4Gio6OJrAAAHCGOdXtHNx0CwAAjEdgAQAAxiOwAAAA4w2ae1gAADBRZ2enjh8/HuwygiYsLEx2u/07r0NgAQCgH1iWpaamJh08eDDYpQTd8OHDFRcX952ek0ZgAQCgH5wIK6NGjVJkZORZ+VBTy7J05MgRtbS0SJLi4+P7vBaBBQCA06yzs9MXVmJiYoJdTlANGTJEktTS0qJRo0b1+eMhbroFAOA0O3HPSmRkZJArMcOJffgu9/IQWAAA6Cdn48dA3Tkd+0BgAQAAxiOwAACA7yQpKUklJSX9+jsILAAAwHgEFgAAYDwCCwAA8Jk2bZoWLlyohQsXyul0KjY2VkuXLpVlWZL+8fXkn/zkJxoyZIjGjBmjsrKyAamrT4Fl5cqVSkpKUkREhDIyMlRdXd3j2GnTpslms3VpOTk5fuM++eQTXXfddXI6nYqKilJaWprq6+v7Uh4AAEaxLEttbW1BaSeCRiBWrVql0NBQVVdX6+mnn9by5cv14osvSpJuv/12NTQ06P3339frr7+u3/72t74Hw/WngB8ct3r1ahUUFKi0tFQZGRkqKSlRdna26urqNGrUqC7jKyoq1NHR4fv5wIEDSk5O1syZM319f/3rXzV16lTNnTtXv/rVrxQdHa2//OUvioiI6ONpAQBgjiNHjmjo0KFB+d2HDx9WVFRUQHMSExP11FNPyWazafz48fr444/11FNP6corr9Q777yj6upqpaWlSZLcbrcuvvji/ijdT8BXWJYvX6477rhD+fn5mjhxokpLSxUZGamXXnqp2/EjR45UXFycr23cuFGRkZF+geWXv/ylfvSjH+mJJ57QZZddpgsvvFDXXXddtwEIAAD0r8svv9zv2SmZmZnavXu3PvnkE4WGhio1NdV3bMKECRo+fHi/1xTQFZaOjg7V1NSosLDQ1xcSEqKsrCxt2bKlV2u43W7l5eX50p7X69Xbb7+tX/ziF8rOztaf//xnjRkzRoWFhZoxY0Yg5QEAYKTIyEgdPnw4aL97MAgosOzfv1+dnZ1yuVx+/S6XS7t27Trl/OrqatXW1srtdvv6WlpadPjwYT322GN6+OGH9fjjj6uyslI33nij3n//fV155ZXdrtXe3q729nbfzx6PJ5BTAQBgwNhstoA/lgmmbdu2+f28detWjRs3ThMmTNA333yjmpoa30dCdXV1A/IXqQf0W0Jut1uTJk1Senq6r8/r9UqSrr/+et17771KSUnRkiVL9OMf/1ilpaU9rlVcXCyn0+lriYmJ/V4/AABng/r6ehUUFKiurk6vvfaann32WS1evFjjx4/XNddco5///Ofatm2bampqNG/ePN8fOOxPAQWW2NhY2e12NTc3+/U3NzcrLi7upHPb2tpUXl6uuXPndlkzNDRUEydO9Ou/+OKLT/otocLCQrW2tvpaQ0NDIKcCAAB6MHv2bB09elTp6elasGCBFi9erDvvvFOS9PLLLyshIUFXXnmlbrzxRt15550Dcs9pQB8JhYeHKzU1VVVVVb77S7xer6qqqrRw4cKTzl2zZo3a29s1a9asLmumpaWprq7Or//TTz/V+eef3+N6DodDDocjkPIBAEAvhIWFqaSkRM8991yXY3FxcXrrrbf8+m677bZ+ryngrzUXFBRozpw5mjJlitLT01VSUqK2tjbl5+dL+kcqGz16tIqLi/3mud1uzZgxQzExMV3WvP/++5Wbm6sf/OAHuuqqq1RZWak333xTH3zwQd/OCgAADCoBB5bc3Fzt27dPRUVFampqUkpKiiorK3034tbX1yskxP+Tprq6Om3evFkbNmzods0bbrhBpaWlKi4u1t13363x48frv//7vzV16tQ+nBIAABhsbFZfHoFnII/HI6fTqdbWVkVHRwe7HADAWezYsWPas2ePxowZw0NQdfL96O37N39LCAAAGI/AAgBAPxkkH2J8Z6djHwgsAACcZmFhYZL+8TeE8O0+nNiXvgj4plsAAHBydrtdw4cP9/0V48jISL+/zXO2sCxLR44cUUtLi4YPHy673d7ntQgsAAD0gxMPVD0RWs5mw4cPP+UDZk+FwAIAQD+w2WyKj4/XqFGjdPz48WCXEzRhYWHf6crKCQQWAAD6kd1uPy1v2Gc7broFAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGC8PgWWlStXKikpSREREcrIyFB1dXWPY6dNmyabzdal5eTk+MbcfvvtXY5fc801fSkNAAAMQqGBTli9erUKCgpUWlqqjIwMlZSUKDs7W3V1dRo1alSX8RUVFero6PD9fODAASUnJ2vmzJl+46655hq9/PLLvp8dDkegpQEAgEEq4Cssy5cv1x133KH8/HxNnDhRpaWlioyM1EsvvdTt+JEjRyouLs7XNm7cqMjIyC6BxeFw+I0bMWJE384IAAAMOgEFlo6ODtXU1CgrK+vbBUJClJWVpS1btvRqDbfbrby8PEVFRfn1f/DBBxo1apTGjx+v+fPn68CBAyddp729XR6Px68BAIDBKaDAsn//fnV2dsrlcvn1u1wuNTU1nXJ+dXW1amtrNW/ePL/+a665Rv/5n/+pqqoqPf7449q0aZOuvfZadXZ29rhWcXGxnE6nryUmJgZyKgAA4AwS8D0s34Xb7dakSZOUnp7u15+Xl+f796RJkzR58mRdeOGF+uCDD3T11Vd3u1ZhYaEKCgp8P3s8HkILAACDVEBXWGJjY2W329Xc3OzX39zcrLi4uJPObWtrU3l5uebOnXvK33PBBRcoNjZWn332WY9jHA6HoqOj/RoAABicAgos4eHhSk1NVVVVla/P6/WqqqpKmZmZJ527Zs0atbe3a9asWaf8PX//+9914MABxcfHB1IeAAAYpAL+llBBQYFeeOEFrVq1Sp988onmz5+vtrY25efnS5Jmz56twsLCLvPcbrdmzJihmJgYv/7Dhw/r/vvv19atW/X555+rqqpK119/vcaOHavs7Ow+nhYAABhMAr6HJTc3V/v27VNRUZGampqUkpKiyspK34249fX1Cgnxz0F1dXXavHmzNmzY0GU9u92ujz76SKtWrdLBgweVkJCg6dOn69e//jXPYgEAAJIkm2VZVrCLOB08Ho+cTqdaW1u5nwUAgDNEb9+/+VtCAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADBenwLLypUrlZSUpIiICGVkZKi6urrHsdOmTZPNZuvScnJyuh1/1113yWazqaSkpC+lAQCAQSjgwLJ69WoVFBRo2bJl2rFjh5KTk5Wdna2WlpZux1dUVKixsdHXamtrZbfbNXPmzC5j165dq61btyohISHwMwEAAINWwIFl+fLluuOOO5Sfn6+JEyeqtLRUkZGReumll7odP3LkSMXFxfnaxo0bFRkZ2SWwfPnll1q0aJHKysoUFhbWt7MBAACDUkCBpaOjQzU1NcrKyvp2gZAQZWVlacuWLb1aw+12Ky8vT1FRUb4+r9er2267Tffff78uueSSXq3T3t4uj8fj1wAAwOAUUGDZv3+/Ojs75XK5/PpdLpeamppOOb+6ulq1tbWaN2+eX//jjz+u0NBQ3X333b2upbi4WE6n09cSExN7PRcAAJxZBvRbQm63W5MmTVJ6erqvr6amRk8//bReeeUV2Wy2Xq9VWFio1tZWX2toaOiPkgEAgAECCiyxsbGy2+1qbm72629ublZcXNxJ57a1tam8vFxz58716//jH/+olpYWnXfeeQoNDVVoaKi++OIL3XfffUpKSupxPYfDoejoaL8GAAAGp4ACS3h4uFJTU1VVVeXr83q9qqqqUmZm5knnrlmzRu3t7Zo1a5Zf/2233aaPPvpIO3fu9LWEhATdf//9Wr9+fSDlAQCAQSo00AkFBQWaM2eOpkyZovT0dJWUlKitrU35+fmSpNmzZ2v06NEqLi72m+d2uzVjxgzFxMT49cfExHTpCwsLU1xcnMaPHx9oeQAAYBAKOLDk5uZq3759KioqUlNTk1JSUlRZWem7Ebe+vl4hIf4Xburq6rR582Zt2LDh9FQNAADOKjbLsqxgF3E6eDweOZ1Otba2cj8LAABniN6+f/O3hAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwXp8Cy8qVK5WUlKSIiAhlZGSourq6x7HTpk2TzWbr0nJycnxjHnzwQU2YMEFRUVEaMWKEsrKytG3btr6UBgAABqGAA8vq1atVUFCgZcuWaceOHUpOTlZ2drZaWlq6HV9RUaHGxkZfq62tld1u18yZM31jLrroIq1YsUIff/yxNm/erKSkJE2fPl379u3r+5kBAIBBw2ZZlhXIhIyMDKWlpWnFihWSJK/Xq8TERC1atEhLliw55fySkhIVFRWpsbFRUVFR3Y7xeDxyOp169913dfXVV/eqrhNzWltbFR0d3fsTAgAAQdPb9++ArrB0dHSopqZGWVlZ3y4QEqKsrCxt2bKlV2u43W7l5eX1GFY6Ojr0/PPPy+l0Kjk5ucd12tvb5fF4/BoAABicAgos+/fvV2dnp1wul1+/y+VSU1PTKedXV1ertrZW8+bN63Lsrbfe0tChQxUREaGnnnpKGzduVGxsbI9rFRcXy+l0+lpiYmIgpwIAAM4gA/otIbfbrUmTJik9Pb3Lsauuuko7d+7Un/70J11zzTW6+eabe7wvRpIKCwvV2trqaw0NDf1ZOgAACKKAAktsbKzsdruam5v9+pubmxUXF3fSuW1tbSovL9fcuXO7PR4VFaWxY8fq8ssvl9vtVmhoqNxud4/rORwORUdH+zUAADA4BRRYwsPDlZqaqqqqKl+f1+tVVVWVMjMzTzp3zZo1am9v16xZs3r1u7xer9rb2wMpDwAADFKhgU4oKCjQnDlzNGXKFKWnp6ukpERtbW3Kz8+XJM2ePVujR49WcXGx3zy3260ZM2YoJibGr7+trU2PPPKIrrvuOsXHx2v//v1auXKlvvzyS7+vPgMAgLNXwIElNzdX+/btU1FRkZqampSSkqLKykrfjbj19fUKCfG/cFNXV6fNmzdrw4YNXdaz2+3atWuXVq1apf379ysmJkZpaWn64x//qEsuuaSPpwUAAAaTgJ/DYiqewwIAwJmnX57DAgAAEAwEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjhQa7AJNZlqUjR44EuwwAAIwQGRkpm80WlN9NYDmJI0eOaOjQocEuAwAAIxw+fFhRUVFB+d18JAQAAIzHFZaTiIyM1OHDh4NdBgAARoiMjAza7yawnITNZgvapS8AAPAtPhICAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGK9PgWXlypVKSkpSRESEMjIyVF1d3ePYadOmyWazdWk5OTmSpOPHj+uBBx7QpEmTFBUVpYSEBM2ePVt79+7t2xkBAIBBJ+DAsnr1ahUUFGjZsmXasWOHkpOTlZ2drZaWlm7HV1RUqLGx0ddqa2tlt9s1c+ZMSdKRI0e0Y8cOLV26VDt27FBFRYXq6up03XXXfbczAwAAg4bNsiwrkAkZGRlKS0vTihUrJEler1eJiYlatGiRlixZcsr5JSUlKioqUmNjo6Kiorods337dqWnp+uLL77Qeeed16u6PB6PnE6nWltbFR0d3fsTAgAAQdPb9++ArrB0dHSopqZGWVlZ3y4QEqKsrCxt2bKlV2u43W7l5eX1GFYkqbW1VTabTcOHD+9xTHt7uzwej18DAACDU0CBZf/+/ers7JTL5fLrd7lcampqOuX86upq1dbWat68eT2OOXbsmB544AHdcsstJ01axcXFcjqdvpaYmNj7EwEAAGeUAf2WkNvt1qRJk5Sent7t8ePHj+vmm2+WZVl67rnnTrpWYWGhWltbfa2hoaE/SgYAAAYIDWRwbGys7Ha7mpub/fqbm5sVFxd30rltbW0qLy/XQw891O3xE2Hliy++0HvvvXfK+1AcDoccDkcg5QMAgDNUQFdYwsPDlZqaqqqqKl+f1+tVVVWVMjMzTzp3zZo1am9v16xZs7ocOxFWdu/erXfffVcxMTGBlAUAAAa5gK6wSFJBQYHmzJmjKVOmKD09XSUlJWpra1N+fr4kafbs2Ro9erSKi4v95rndbs2YMaNLGDl+/Lhuuukm7dixQ2+99ZY6Ozt998OMHDlS4eHhfT03AAAwSAQcWHJzc7Vv3z4VFRWpqalJKSkpqqys9N2IW19fr5AQ/ws3dXV12rx5szZs2NBlvS+//FLr1q2TJKWkpPgde//99zVt2rRASwQAAINMwM9hMRXPYQEA4MzTL89hAQAACAYCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYr0+BZeXKlUpKSlJERIQyMjJUXV3d49hp06bJZrN1aTk5Ob4xFRUVmj59umJiYmSz2bRz586+lAUAAAapgAPL6tWrVVBQoGXLlmnHjh1KTk5Wdna2Wlpauh1fUVGhxsZGX6utrZXdbtfMmTN9Y9ra2jR16lQ9/vjjfT8TAAAwaNksy7ICmZCRkaG0tDStWLFCkuT1epWYmKhFixZpyZIlp5xfUlKioqIiNTY2Kioqyu/Y559/rjFjxujPf/6zUlJSAilLHo9HTqdTra2tio6ODmguAAAIjt6+fwd0haWjo0M1NTXKysr6doGQEGVlZWnLli29WsPtdisvL69LWAEAAOhJaCCD9+/fr87OTrlcLr9+l8ulXbt2nXJ+dXW1amtr5Xa7A6uyG+3t7Wpvb/f97PF4vvOaAADATAP6LSG3261JkyYpPT39O69VXFwsp9Ppa4mJiaehQgAAYKKAAktsbKzsdruam5v9+pubmxUXF3fSuW1tbSovL9fcuXMDr7IbhYWFam1t9bWGhobTsi4AADBPQIElPDxcqampqqqq8vV5vV5VVVUpMzPzpHPXrFmj9vZ2zZo1q2+V/hOHw6Ho6Gi/BgAABqeA7mGRpIKCAs2ZM0dTpkxRenq6SkpK1NbWpvz8fEnS7NmzNXr0aBUXF/vNc7vdmjFjhmJiYrqs+dVXX6m+vl579+6VJNXV1UmS4uLiTnnlBgAADH4BB5bc3Fzt27dPRUVFampqUkpKiiorK3034tbX1yskxP/CTV1dnTZv3qwNGzZ0u+a6det8gUeS8vLyJEnLli3Tgw8+GGiJAABgkAn4OSym4jksAACcefrlOSwAAADBQGABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPH6FFhWrlyppKQkRUREKCMjQ9XV1T2OnTZtmmw2W5eWk5PjG2NZloqKihQfH68hQ4YoKytLu3fv7ktpAABgEAo4sKxevVoFBQVatmyZduzYoeTkZGVnZ6ulpaXb8RUVFWpsbPS12tpa2e12zZw50zfmiSee0DPPPKPS0lJt27ZNUVFRys7O1rFjx/p+ZgAAYNCwWZZlBTIhIyNDaWlpWrFihSTJ6/UqMTFRixYt0pIlS045v6SkREVFRWpsbFRUVJQsy1JCQoLuu+8+/fu//7skqbW1VS6XS6+88ory8vJ6VZfH45HT6VRra6uio6MDOSUAABAkvX3/DugKS0dHh2pqapSVlfXtAiEhysrK0pYtW3q1htvtVl5enqKioiRJe/bsUVNTk9+aTqdTGRkZJ12zvb1dHo/HrwEAgMEpoMCyf/9+dXZ2yuVy+fW7XC41NTWdcn51dbVqa2s1b948X9+JeYGuWVxcLKfT6WuJiYmBnAoAADiDDOi3hNxutyZNmqT09PTvvFZhYaFaW1t9raGh4TRUCAAATBRQYImNjZXdbldzc7Nff3Nzs+Li4k46t62tTeXl5Zo7d65f/4l5ga7pcDgUHR3t1wAAwOAUUGAJDw9XamqqqqqqfH1er1dVVVXKzMw86dw1a9aovb1ds2bN8usfM2aM4uLi/Nb0eDzatm3bKdcEAABnh9BAJxQUFGjOnDmaMmWK0tPTVVJSora2NuXn50uSZs+erdGjR6u4uNhvntvt1owZMxQTE+PXb7PZdM899+jhhx/WuHHjNGbMGC1dulQJCQmaMWNG388MAAAMGgEHltzcXO3bt09FRUVqampSSkqKKisrfTfN1tfXKyTE/8JNXV2dNm/erA0bNnS75i9+8Qu1tbXpzjvv1MGDBzV16lRVVlYqIiKiD6cEAAAGm4Cfw2IqnsMCAMCZp1+ewwIAABAMBBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMF6fAsvKlSuVlJSkiIgIZWRkqLq6+qTjDx48qAULFig+Pl4Oh0MXXXSR/vCHP/iOHzp0SPfcc4/OP/98DRkyRN/73ve0ffv2vpQGAAAGoYADy+rVq1VQUKBly5Zpx44dSk5OVnZ2tlpaWrod39HRoR/+8If6/PPP9frrr6uurk4vvPCCRo8e7Rszb948bdy4Ub/73e/08ccfa/r06crKytKXX37Z9zMDAACDhs2yLCuQCRkZGUpLS9OKFSskSV6vV4mJiVq0aJGWLFnSZXxpaal+85vfaNeuXQoLC+ty/OjRoxo2bJjeeOMN5eTk+PpTU1N17bXX6uGHH+5VXR6PR06nU62trYqOjg7klAAAQJD09v07oCssHR0dqqmpUVZW1rcLhIQoKytLW7Zs6XbOunXrlJmZqQULFsjlcunSSy/Vo48+qs7OTknSN998o87OTkVERPjNGzJkiDZv3txjLe3t7fJ4PH4NAAAMTgEFlv3796uzs1Mul8uv3+Vyqampqds5f/vb3/T666+rs7NTf/jDH7R06VI9+eSTvisnw4YNU2Zmpn79619r79696uzs1KuvvqotW7aosbGxx1qKi4vldDp9LTExMZBTAQAAZ5B+/5aQ1+vVqFGj9Pzzzys1NVW5ubn65S9/qdLSUt+Y3/3ud7IsS6NHj5bD4dAzzzyjW265RSEhPZdXWFio1tZWX2toaOjvUwEAAEESGsjg2NhY2e12NTc3+/U3NzcrLi6u2znx8fEKCwuT3W739V188cVqampSR0eHwsPDdeGFF2rTpk1qa2uTx+NRfHy8cnNzdcEFF/RYi8PhkMPhCKR8AABwhgroCkt4eLhSU1NVVVXl6/N6vaqqqlJmZma3c6644gp99tln8nq9vr5PP/1U8fHxCg8P9xsbFRWl+Ph4ff3111q/fr2uv/76QMoDAACDVMAfCRUUFOiFF17QqlWr9Mknn2j+/Plqa2tTfn6+JGn27NkqLCz0jZ8/f76++uorLV68WJ9++qnefvttPfroo1qwYIFvzPr161VZWak9e/Zo48aNuuqqqzRhwgTfmgAA4OwW0EdCkpSbm6t9+/apqKhITU1NSklJUWVlpe9G3Pr6er97TxITE7V+/Xrde++9mjx5skaPHq3FixfrgQce8I1pbW1VYWGh/v73v2vkyJH66U9/qkceeaTbr0EDAICzT8DPYTEVz2EBAODM0y/PYQEAAAgGAgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeKHBLuB0sSxLkuTxeIJcCQAA6K0T79sn3sd7MmgCy6FDhyRJiYmJQa4EAAAE6tChQ3I6nT0et1mnijRnCK/Xq71792rYsGGy2Wy9nufxeJSYmKiGhgZFR0f3Y4WDH3t5erGfpw97eXqxn6cPe/mPKyuHDh1SQkKCQkJ6vlNl0FxhCQkJ0bnnntvn+dHR0Wfti+V0Yy9PL/bz9GEvTy/28/Q52/fyZFdWTuCmWwAAYDwCCwAAMN5ZH1gcDoeWLVsmh8MR7FLOeOzl6cV+nj7s5enFfp4+7GXvDZqbbgEAwOB11l9hAQAA5iOwAAAA4xFYAACA8QgsAADAeGdFYCkuLlZaWpqGDRumUaNGacaMGaqrq/Mbc+zYMS1YsEAxMTEaOnSofvrTn6q5uTlIFZvtueee0+TJk30POsrMzNQ777zjO85e9t1jjz0mm82me+65x9fHfvbegw8+KJvN5tcmTJjgO85eBubLL7/UrFmzFBMToyFDhmjSpEn68MMPfccty1JRUZHi4+M1ZMgQZWVlaffu3UGs2FxJSUldXps2m00LFiyQxGuzN86KwLJp0yYtWLBAW7du1caNG3X8+HFNnz5dbW1tvjH33nuv3nzzTa1Zs0abNm3S3r17deONNwaxanOde+65euyxx1RTU6MPP/xQ//qv/6rrr79ef/nLXySxl321fft2/cd//IcmT57s189+BuaSSy5RY2Ojr23evNl3jL3sva+//lpXXHGFwsLC9M477+j//u//9OSTT2rEiBG+MU888YSeeeYZlZaWatu2bYqKilJ2draOHTsWxMrNtH37dr/X5caNGyVJM2fOlMRrs1ess1BLS4slydq0aZNlWZZ18OBBKywszFqzZo1vzCeffGJJsrZs2RKsMs8oI0aMsF588UX2so8OHTpkjRs3ztq4caN15ZVXWosXL7Ysi9dmoJYtW2YlJyd3e4y9DMwDDzxgTZ06tcfjXq/XiouLs37zm9/4+g4ePGg5HA7rtddeG4gSz2iLFy+2LrzwQsvr9fLa7KWz4grLP2ttbZUkjRw5UpJUU1Oj48ePKysryzdmwoQJOu+887Rly5ag1Him6OzsVHl5udra2pSZmcle9tGCBQuUk5Pjt28Sr82+2L17txISEnTBBRfo1ltvVX19vST2MlDr1q3TlClTNHPmTI0aNUqXXXaZXnjhBd/xPXv2qKmpyW8/nU6nMjIy2M9T6Ojo0Kuvvqqf/exnstlsvDZ76awLLF6vV/fcc4+uuOIKXXrppZKkpqYmhYeHa/jw4X5jXS6XmpqaglCl+T7++GMNHTpUDodDd911l9auXauJEyeyl31QXl6uHTt2qLi4uMsx9jMwGRkZeuWVV1RZWannnntOe/bs0fe//30dOnSIvQzQ3/72Nz333HMaN26c1q9fr/nz5+vuu+/WqlWrJMm3Zy6Xy28e+3lqv//973Xw4EHdfvvtkvh/3luD5q8199aCBQtUW1vr97k2Ajd+/Hjt3LlTra2tev311zVnzhxt2rQp2GWdcRoaGrR48WJt3LhRERERwS7njHfttdf6/j158mRlZGTo/PPP13/9139pyJAhQazszOP1ejVlyhQ9+uijkqTLLrtMtbW1Ki0t1Zw5c4Jc3ZnN7Xbr2muvVUJCQrBLOaOcVVdYFi5cqLfeekvvv/++zj33XF9/XFycOjo6dPDgQb/xzc3NiouLG+Aqzwzh4eEaO3asUlNTVVxcrOTkZD399NPsZYBqamrU0tKif/mXf1FoaKhCQ0O1adMmPfPMMwoNDZXL5WI/v4Phw4froosu0meffcZrM0Dx8fGaOHGiX9/FF1/s+4jtxJ798zdZ2M+T++KLL/Tuu+9q3rx5vj5em71zVgQWy7K0cOFCrV27Vu+9957GjBnjdzw1NVVhYWGqqqry9dXV1am+vl6ZmZkDXe4Zyev1qr29nb0M0NVXX62PP/5YO3fu9LUpU6bo1ltv9f2b/ey7w4cP669//avi4+N5bQboiiuu6PL4h08//VTnn3++JGnMmDGKi4vz20+Px6Nt27axnyfx8ssva9SoUcrJyfH18drspWDf9TsQ5s+fbzmdTuuDDz6wGhsbfe3IkSO+MXfddZd13nnnWe+995714YcfWpmZmVZmZmYQqzbXkiVLrE2bNll79uyxPvroI2vJkiWWzWazNmzYYFkWe/ld/f/fErIs9jMQ9913n/XBBx9Ye/bssf7nf/7HysrKsmJjY62WlhbLstjLQFRXV1uhoaHWI488Yu3evdsqKyuzIiMjrVdffdU35rHHHrOGDx9uvfHGG9ZHH31kXX/99daYMWOso0ePBrFyc3V2dlrnnXee9cADD3Q5xmvz1M6KwCKp2/byyy/7xhw9etT6t3/7N2vEiBFWZGSkdcMNN1iNjY3BK9pgP/vZz6zzzz/fCg8Pt8455xzr6quv9oUVy2Ivv6t/DizsZ+/l5uZa8fHxVnh4uDV69GgrNzfX+uyzz3zH2cvAvPnmm9all15qORwOa8KECdbzzz/vd9zr9VpLly61XC6X5XA4rKuvvtqqq6sLUrXmW79+vSWp2z3itXlqNsuyrCBe4AEAADils+IeFgAAcGYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAiCopk2bpnvuuafH40lJSSopKRmwegCY6az7a80Azizbt29XVFRUsMsAEGQEFgBGO+ecc4JdAgAD8JEQgKD75ptvtHDhQjmdTsXGxmrp0qU68VdD/vkjIZvNphdffFE33HCDIiMjNW7cOK1bty5IlQMYKAQWAEG3atUqhYaGqrq6Wk8//bSWL1+uF198scfxv/rVr3TzzTfro48+0o9+9CPdeuut+uqrrwawYgADjcACIOgSExP11FNPafz48br11lu1aNEiPfXUUz2Ov/3223XLLbdo7NixevTRR3X48GFVV1cPYMUABhqBBUDQXX755bLZbL6fMzMztXv3bnV2dnY7fvLkyb5/R0VFKTo6Wi0tLf1eJ4DgIbAAOOOEhYX5/Wyz2eT1eoNUDYCBQGABEHTbtm3z+3nr1q0aN26c7HZ7kCoCYBoCC4Cgq6+vV0FBgerq6vTaa6/p2Wef1eLFi4NdFgCD8BwWAEE3e/ZsHT16VOnp6bLb7Vq8eLHuvPPOYJcFwCA268TDDgAAAAzFR0IAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGO//AVHE3PWcMZFSAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHGCAYAAABXQNCQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAzAklEQVR4nO3deXRUZZ7/8U+lklQSIAlLdkMW9h0MEAJtgxoFtR3oYyt49KAZBQdRwWi30C0wP6VBW0UGZUBoUVRU1HahR8QlM9BDi4SlHYnSbAkkEJIQAwnEkEBV/f7oTklkSyWVulW33q9z7pHcuvfWt+qI+fg83/tci9PpdAoAAMCHBRldAAAAwOUQWAAAgM8jsAAAAJ9HYAEAAD6PwAIAAHwegQUAAPg8AgsAAPB5BBYAAODzCCwAAMDnEVgAAIDPI7AA8JhXX31VFovFtYWFhalnz5564IEHVF5e3uTY9evXy2KxKDExUQ6Hw7X/qaeeksVi0aeffnrB97jxxhsVFRWl0tLSZtd15MgR3XbbbYqOjlZkZKTGjx+vwsLCln1IAIaw8CwhAJ7y6quvKicnR0888YTS0tJ0+vRpbd68Wa+//rpSUlJUUFCgiIgISdIdd9yhL7/8UgcPHtTnn3+u7OxsSdKZM2eUkZGh2tpaFRQUKDw83HX9d999V7fddpuWLl2q+++/v1k1nTp1SldeeaWqq6v1yCOPKCQkRM8//7ycTqe+/vprde7c2fNfBADPcwKAh7zyyitOSc5t27Y12Z+bm+uU5HzzzTedTqfTeerUKWe7du2cS5YscQ4ZMsR59913Nzl+y5YtzqCgIOfs2bNd+2pqapyJiYnOESNGOO12e7Nrevrpp52SnPn5+a59u3fvdlqt1ibXB+DbmBIC0OauueYaSVJRUZEk6YMPPlBdXZ1uvfVWTZo0Se+//75Onz7tOn7EiBH6t3/7Nz377LP67rvvJEmPP/64KioqtGLFCgUFNf8/Xe+9956GDRumYcOGufb17t1b1157rd555x1PfDwAXkBgAdDmDhw4IEmu6Zc1a9bo6quvVnx8vCZNmqSTJ0/qz3/+c5NzFi5cqJiYGN13333asWOHli5dqkcffVQDBgxo9vs6HA598803Gjp06HmvDR8+XAcOHNDJkydb8ckAeAuBBYDHVVdXq7KyUocPH9batWv1xBNPKDw8XL/4xS9UUVGhL774QpMmTZIkde3aVVlZWVqzZk2Ta0RGRmrJkiXavHmzrr/+eqWkpGju3Llu1VFVVaX6+nolJCSc91rjPneadwEYh8ACwOOys7MVExOj5ORkTZo0Se3bt9cHH3ygpKQkvf322woKCtItt9ziOv7222/XJ598ouPHjze5zi233KIbb7xRVVVVWrp0aZMG3Oaoq6uTJNlstvNeCwsLa3IMAN8WbHQBAMxn6dKl6tmzp4KDgxUXF6devXq5+k7eeOMNDR8+XN9//72+//57SdKQIUPU0NCgd999V1OnTm1yrWHDhmn9+vUXnNa5nMaAU19ff95rjT0z7oYgAMYgsADwuOHDh18wYOzbt0/btm2TJPXo0eO819esWXNeYGmNTp06yWaz6ejRo+e91rgvMTHRY+8HoO0QWAB4zZo1axQSEqLXX39dVqu1yWubN2/WkiVLVFxcrK5du3rk/YKCgjRgwABt3779vNe2bt2q9PR0dejQwSPvBaBtEVgAeM2aNWt01VVXaeLEiee9lpWVpSVLluitt97SY4895rH3/NWvfqVZs2Zp+/btrlGfPXv26L//+7/16KOPeux9ALQtmm4BeMXWrVu1f/9+/cu//MsFX09KStKVV1553t1CrXX//ferW7duuummm/TMM89o8eLFuu666xQXF6dHHnnEo+8FoO0QWAB4RWMQufnmmy96zM0336xdu3bpm2++8dj7dujQQRs3btTPf/5zzZ8/X3PmzNGgQYO0adMmxcTEeOx9ALQtniUEAAB8HiMsAADA59F0C8AvVVVVqaGh4aKvW61WpnwAE2FKCIBfGjNmjDZt2nTR11NSUnTw4EHvFQSgTRFYAPilHTt2nLeU/7nCw8M1atQoL1YEoC0RWAAAgM8zRQ+Lw+FQaWmpOnToIIvFYnQ5AACgGZxOp06ePKnExETX88YuxhSBpbS0VMnJyUaXAQAAWqCkpERXXHHFJY8xRWBpfBZISUmJIiMjDa4GAAA0R01NjZKTk5v1TC9TBJbGaaDIyEgCCwAAfqY57RwsHAcAAHwegQUAAPg8AgsAAPB5puhhAQDAV9ntdp05c8boMgwTEhIiq9Xa6usQWAAAaANOp1NlZWU6ceKE0aUYLjo6WvHx8a1aK43AAgBAG2gMK7GxsYqIiAjIhU2dTqd++OEHVVRUSJISEhJafC0CCwAAHma3211hpXPnzkaXY6jw8HBJUkVFhWJjY1s8PUTTLQAAHtbYsxIREWFwJb6h8XtoTS8PgQUAgDYSiNNAF+KJ74HAAgAAfB6BBQAA+DwCCwAAaLHU1FQtXry4zd+Hu4Quwel0qri42Ogy4MPCwsIUGxvLPDUAtDECyyWcOXNGqampRpcBHxcdHa3+/furX79+6tevn+vPsbGxRpcGAKZBYLmMsLAwo0uAD6uvr9eJEye0efNmbd68uclrMTExTQJM4z87duxoULUAjNK4gJoR3Fm0bsyYMerfv78k6fXXX1dISIimTZumJ554QhaLRRUVFbrnnnv0xRdfKD4+XvPnz2/L0psgsFxCaGio6urqjC4DPuz06dPas2ePCgoK9O2337r+WVRUpGPHjmnjxo3auHFjk3MSExPPG43p27evIiMjjfkQANrcDz/8oPbt2xvy3qdOnVK7du2affzq1at1zz33KD8/X9u3b9fUqVPVtWtXTZkyRXfffbdKS0v1P//zPwoJCdFDDz3kWsW2rRFYgFYICwvToEGDNGjQoCb7a2trtXv37iYhpqCgQCUlJSotLVVpaak+//zzJud07dr1vKmlPn36sPAUAK9KTk7W888/L4vFol69emnXrl16/vnnNXr0aH3yySfKz8/XsGHDJEkvv/yy+vTp45W6CCxAG2jXrp2GDh2qoUOHNtlfU1Oj77777rwRmaNHj6q4uFjFxcVav36963iLxaL09PQmozH9+vVT7969ZbPZvP2xALRQRESETp06Zdh7u2PEiBFNppCysrL03HPPaffu3QoODlZGRobrtd69eys6OtpTpV4SgQXwosjISI0YMUIjRoxosr+qqqpJgGn8c2VlpQ4cOKADBw5o3bp1ruOtVqu6d+9+Xn9Mjx49FBIS4u2PBeAyLBaLW9MyOB+BBfABnTp10lVXXaWrrrqqyf6KiorzRmO+/fZbnThxQnv27NGePXv0pz/9yXV8SEiIevXqdV6zb3p6eosfOAYgsGzdurXJz1999ZV69Oih3r176+zZs9qxY4drSmjPnj06ceKEV+oisAA+LDY2Vtdcc42uueYa1z6n06nS0tLz+mO+++47nTp1SgUFBSooKNDatWtd54SFhal3797q37+/evbsqbCwMAUHB8tqtSo4ONi1nftzc/7cknOsVquCgoJYuwbwUcXFxcrNzdV9992nnTt36oUXXtBzzz2nXr16ady4cbrvvvu0bNkyBQcHa+bMma6nMbc1AgvgZywWi5KSkpSUlKTrr7/etd/hcKi4uPi80ZjvvvtOp0+f1tdff62vv/7auMJ/wp2QEx0drWXLlp3X3AzA8yZPnqy6ujoNHz5cVqtVM2bM0NSpUyVJr7zyiu69916NHj1acXFxmj9/vubMmeOVuixOp9PplXdqQzU1NYqKilJ1dTW3hgI/YbfbVVRU1OSW6zNnzujs2bOy2+06e/Zsi/7cnOMcDofHPseMGTO8svw34AmnT59WUVGR0tLS/Go9rzFjxmjw4MEe/7t2se/Dnd/fjLAAJtfYoNu9e3dNmDDBq+/tdDpbFXjOnj2rdevW6ZlnntGBAwe8WjsA30JgAdBmLBaLa1qnperq6ggsAAgsAHxbt27dJEmFhYVyOBwKCuIh80Bb+enK3L6Ev/kAfFrXrl0VHBys+vp6HTlyxOhyALeYoE3UIzzxPRBYAPi04OBg11PTmRaCv2hcwNGoBx76msbvoTULWzIlBMDndevWTfv379eBAwc0ZswYo8sBLstqtSo6Otr1YEB3nphsJo1Pqa6oqFB0dHSrFrAksADweY19LIywwJ/Ex8dLkteeZuzLoqOjXd9HSxFYAPi8xsCyf/9+gysBms9isSghIUGxsbE6c+aM0eUYJiQkxCOPBiGwAPB53bt3l8QIC/yT1WrlWV4eQNMtAJ937pQQd10AgYnAAsDnpaenS5Kqq6tVVVVlcDUAjEBgAeDzwsPDlZiYKIlpISBQEVgA+IXGPhYab4HARGAB4Be4tRkIbAQWAH6BwAIENgILAL9AYAECG4EFgF+ghwUIbAQWAH6hcYSlrKxMtbW1BlcDwNsILAD8QseOHdWxY0dJUmFhocHVAPA2AgsAv0EfCxC4WhRYli5dqtTUVIWFhSkzM1P5+fkXPXbMmDGyWCznbTfddJPrGKfTqblz5yohIUHh4eHKzs7Wvn37WlIaABPjIYhA4HI7sKxdu1a5ubmaN2+edu7cqUGDBmns2LEXfXz2+++/r6NHj7q2goICWa1W3Xrrra5j/vCHP2jJkiVavny5tm7dqnbt2mns2LE6ffp0yz8ZANPhIYhA4HI7sCxatEhTpkxRTk6O+vbtq+XLlysiIkKrVq264PGdOnVSfHy8a/v8888VERHhCixOp1OLFy/W448/rvHjx2vgwIF67bXXVFpaqg8//PCC16yvr1dNTU2TDYD5MSUEBC63AktDQ4N27Nih7OzsHy8QFKTs7Gxt2bKlWdd4+eWXNWnSJLVr106SVFRUpLKysibXjIqKUmZm5kWvuXDhQkVFRbm25ORkdz4GAD9FYAECl1uBpbKyUna7XXFxcU32x8XFqays7LLn5+fnq6CgQPfee69rX+N57lxz9uzZqq6udm0lJSXufAwAfqoxsBw6dEhnzpwxuBoA3hTszTd7+eWXNWDAAA0fPrxV17HZbLLZbB6qCoC/aGzMr6ur06FDh1w9LQDMz60Rli5dushqtaq8vLzJ/vLycsXHx1/y3NraWr399tu65557muxvPK8l1wQQWIKCgpSeni6JaSEg0LgVWEJDQ5WRkaG8vDzXPofDoby8PGVlZV3y3HfffVf19fW68847m+xPS0tTfHx8k2vW1NRo69atl70mgMBDHwsQmNyeEsrNzdVdd92loUOHavjw4Vq8eLFqa2uVk5MjSZo8ebKSkpK0cOHCJue9/PLLmjBhgjp37txkv8Vi0cyZMzV//nz16NFDaWlpmjNnjhITEzVhwoSWfzIApkRgAQKT24Fl4sSJOnbsmObOnauysjINHjxYGzZscDXNFhcXKyio6cDNnj17tHnzZn322WcXvOZvfvMb1dbWaurUqTpx4oR+9rOfacOGDQoLC2vBRwJgZiweBwQmi9PpdBpdRGvV1NQoKipK1dXVioyMNLocAG3o008/1bhx49SvXz8VFBQYXQ6AVnDn9zfPEgLgVxpHWAoLC2WC/98C0EwEFgB+JSUlRVarVXV1dTp69KjR5QDwEgILAL8SEhKirl27SqLxFggkBBYAfqdxwTgab4HAQWAB4He4tRkIPAQWAH6HwAIEHgILAL9DYAECD4EFgN9h8Tgg8BBYAPidxsBy/PhxHT9+3OBqAHgDgQWA32nXrp3rae5MCwGBgcACwC/RxwIEFgILAL9EYAECC4EFgF9i8TggsBBYAPglRliAwEJgAeCXCCxAYCGwAPBLjYHlyJEjqqurM7gaAG2NwALAL3Xu3FmRkZGSpMLCQoOrAdDWCCwA/JLFYnE13jItBJgfgQWA36KPBQgcBBYAfovAAgQOAgsAv8VDEIHAQWAB4LfoYQECB4EFgN9qHGE5ePCgzp49a3A1ANoSgQWA30pKSpLNZtPZs2dVUlJidDkA2hCBBYDfCgoKUlpamiSmhQCzI7AA8Gs8BBEIDAQWAH6NW5uBwEBgAeDXCCxAYCCwAPBrBBYgMBBYAPi1cwOL0+k0uBoAbYXAAsCvpaamKigoSLW1tSovLze6HABthMACwK/ZbDYlJydLYloIMDMCCwC/Rx8LYH4EFgB+j8ACmB+BBYDfY/E4wPwILAD8HiMsgPkRWAD4PQILYH4EFgB+rzGwVFZWqrq62uBqALQFAgsAv9ehQwfFxMRIYpQFMCsCCwBTaGy8JbAA5kRgAWAK9LEA5kZgAWAKBBbA3AgsAEyBwAKYG4EFgCmweBxgbgQWAKbQOMJy+PBh1dfXG1wNAE8jsAAwhZiYGLVv315Op1NFRUVGlwPAwwgsAEzBYrHQxwKYGIEFgGk0Bhb6WADzIbAAMA0WjwPMi8ACwDSYEgLMi8ACwDQILIB5EVgAmEZjYCksLJTdbje4GgCeRGABYBrJyckKCQnRmTNndPjwYaPLAeBBBBYApmG1WpWWliaJaSHAbFoUWJYuXarU1FSFhYUpMzNT+fn5lzz+xIkTmj59uhISEmSz2dSzZ0+tX7/e9fq///u/y2KxNNl69+7dktIABDj6WABzCnb3hLVr1yo3N1fLly9XZmamFi9erLFjx2rPnj2KjY097/iGhgZdd911io2N1XvvvaekpCQdOnRI0dHRTY7r16+fvvjiix8LC3a7NAAgsAAm5XYqWLRokaZMmaKcnBxJ0vLly/Xxxx9r1apVmjVr1nnHr1q1SlVVVfryyy8VEhIiSUpNTT2/kOBgxcfHN6uG+vr6Js8KqampcfdjADApHoIImJNbU0INDQ3asWOHsrOzf7xAUJCys7O1ZcuWC56zbt06ZWVlafr06YqLi1P//v21YMGC8zr49+3bp8TERKWnp+uOO+5QcXHxRetYuHChoqKiXFtycrI7HwOAiTHCApiTW4GlsrJSdrtdcXFxTfbHxcWprKzsgucUFhbqvffek91u1/r16zVnzhw999xzmj9/vuuYzMxMvfrqq9qwYYOWLVumoqIiXXXVVTp58uQFrzl79mxVV1e7tpKSEnc+BgATOzewOJ1Og6sB4Clt3ijicDgUGxurFStWyGq1KiMjQ0eOHNEzzzyjefPmSZJuuOEG1/EDBw5UZmamUlJS9M477+iee+4575o2m002m62tSwfgh9LS0mSxWHTy5ElVVlYqJibG6JIAeIBbIyxdunSR1WpVeXl5k/3l5eUX7T9JSEhQz549ZbVaXfv69OmjsrIyNTQ0XPCc6Oho9ezZkzloAG4LCwtTUlKSJPpYADNxK7CEhoYqIyNDeXl5rn0Oh0N5eXnKysq64DmjRo3S/v375XA4XPv27t2rhIQEhYaGXvCcU6dO6cCBA0pISHCnPACQxEMQATNyex2W3NxcrVy5UqtXr9bu3bs1bdo01dbWuu4amjx5smbPnu06ftq0aaqqqtKMGTO0d+9effzxx1qwYIGmT5/uOubRRx/Vpk2bdPDgQX355Zf65S9/KavVqttvv90DHxFAoKHxFjAft3tYJk6cqGPHjmnu3LkqKyvT4MGDtWHDBlcjbnFxsYKCfsxBycnJ+vTTT/Xwww9r4MCBSkpK0owZM/TYY4+5jjl8+LBuv/12ff/994qJidHPfvYzffXVV8w9A2gRAgtgPhanCdroa2pqFBUVperqakVGRhpdDgCDvfPOO5o4caJGjhypv/71r0aXA+Ai3Pn9zbOEAJgOi8cB5kNgAWA6jVNCFRUVF13PCYB/IbAAMJ2oqCh17txZ0j8WrwTg/wgsAEyJxlvAXAgsAEypMbDQxwKYA4EFgCmxeBxgLgQWAKbElBBgLgQWAKZEYAHMhcACwJQaA0txcfFFH7QKwH8QWACYUnx8vCIiIuRwOHTw4EGjywHQSgQWAKZksViYFgJMhMACwLQILIB5EFgAmBaBBTAPAgsA02LxOMA8CCwATIvF4wDzILAAMK3GEZbCwkI5HA6DqwHQGgQWAKbVtWtXBQcHq76+XqWlpUaXA6AVCCwATCs4OFgpKSmS6GMB/B2BBYCp0ccCmAOBBYCpcWszYA4EFgCmRmABzIHAAsDUCCyAORBYAJjauYvHOZ1Og6sB0FIEFgCmlp6eLkmqrq5WVVWVwdUAaCkCCwBTi4iIUGJioiSmhQB/RmABYHr0sQD+j8ACwPR4CCLg/wgsAEyPxeMA/0dgAWB6TAkB/o/AAsD0CCyA/yOwADC9xsBy9OhR1dbWGlwNgJYgsAAwvU6dOqljx46SpMLCQoOrAdASBBYAAYFpIcC/EVgABAQCC+DfCCwAAgKBBfBvBBYAAYHF4wD/RmABEBBYPA7wbwQWAAGhcYTl0KFDOnPmjMHVAHAXgQVAQEhISFBYWJjsdruKi4uNLgeAmwgsAAJCUFCQ0tPTJdHHAvgjAguAgEEfC+C/CCwAAga3NgP+i8ACIGAQWAD/RWABEDAILID/IrAACBjnBhan02lwNQDcQWABEDBSUlJktVpVV1eno0ePGl0OADcQWAAEjNDQUHXt2lUS00KAvyGwAAgo9LEA/onAAiCg8BBEwD8RWAAEFBaPA/wTgQVAQGFKCPBPBBYAAYXAAvgnAguAgNL4AMSqqiodP37c4GoANFeLAsvSpUuVmpqqsLAwZWZmKj8//5LHnzhxQtOnT1dCQoJsNpt69uyp9evXt+qaANAS7du3V1xcnCRGWQB/4nZgWbt2rXJzczVv3jzt3LlTgwYN0tixY1VRUXHB4xsaGnTdddfp4MGDeu+997Rnzx6tXLlSSUlJLb4mALQGjbeA/3E7sCxatEhTpkxRTk6O+vbtq+XLlysiIkKrVq264PGrVq1SVVWVPvzwQ40aNUqpqakaPXq0Bg0a1OJrAkBr0McC+B+3AktDQ4N27Nih7OzsHy8QFKTs7Gxt2bLlguesW7dOWVlZmj59uuLi4tS/f38tWLBAdru9xdesr69XTU1Nkw0AmovAAvgftwJLZWWl7Ha7a/63UVxcnMrKyi54TmFhod577z3Z7XatX79ec+bM0XPPPaf58+e3+JoLFy5UVFSUa0tOTnbnYwAIcCweB/ifNr9LyOFwKDY2VitWrFBGRoYmTpyo3/3ud1q+fHmLrzl79mxVV1e7tpKSEg9WDMDs6GEB/E+wOwd36dJFVqtV5eXlTfaXl5crPj7+guckJCQoJCREVqvVta9Pnz4qKytTQ0NDi65ps9lks9ncKR0AXBpHWI4cOaK6ujqFh4cbXBGAy3FrhCU0NFQZGRnKy8tz7XM4HMrLy1NWVtYFzxk1apT2798vh8Ph2rd3714lJCQoNDS0RdcEgNbo3LmzIiMjJUlFRUUGVwOgOdyeEsrNzdXKlSu1evVq7d69W9OmTVNtba1ycnIkSZMnT9bs2bNdx0+bNk1VVVWaMWOG9u7dq48//lgLFizQ9OnTm31NAPAki8VCHwvgZ9yaEpKkiRMn6tixY5o7d67Kyso0ePBgbdiwwdU0W1xcrKCgH3NQcnKyPv30Uz388MMaOHCgkpKSNGPGDD322GPNviYAeFq3bt30t7/9jT4WwE9YnE6n0+giWqumpkZRUVGqrq52DfMCwKXMnj1bTz31lKZPn64XX3zR6HKAgOTO72+eJQQgILEWC+BfCCwAAhKBBfAvBBYAAakxsBQVFens2bMGVwPgcggsAALSFVdcIZvNprNnz7L4JOAHCCwAAlJQUJDS0tIkMS0E+AMCC4CARR8L4D8ILAACFovHAf6DwAIgYPEQRMB/EFgABCymhAD/QWABELDODSwmWPQbMDUCC4CAlZqaKovFotraWlVUVBhdDoBLILAACFg2m03JycmSaLwFfB2BBUBAo/EW8A8EFgABjcZbwD8QWAAENAIL4B8ILAACGovHAf6BwAIgoNHDAvgHAguAgNY4wlJZWamamhqDqwFwMQQWAAGtQ4cOiomJkcQoC+DLCCwAAh6Nt4DvI7AACHg03gK+j8ACIODReAv4PgILgIDHlBDg+wgsAAIegQXwfQQWAAGvMbCUlJSovr7e4GoAXAiBBUDAi42NVfv27eV0OlVUVGR0OQAugMACIOBZLBamhQAfR2ABANHHAvg6AgsAiLVYAF9HYAEAMcIC+DoCCwCIxeMAX0dgAQD9OMJSVFQku91ucDUAforAAgCSkpOTFRISooaGBh05csTocgD8BIEFACRZrValpqZKovEW8EUEFgD4J/pYAN9FYAGAf+JOIcB3EVgA4J8ILIDvIrAAwD+xeBzguwgsAPBP546wOJ1Og6sBcC4CCwD8U3p6uiwWi06ePKnKykqjywFwDgILAPxTWFiYkpKSJNHHAvgaAgsAnIPGW8A3EVgA4Bw03gK+icACAOdg8TjANxFYAOAcTAkBvonAAgDnILAAvonAAgDnaAws5eXlOnnypMHVAGhEYAGAc0RHR6tz586SpMLCQoOrAdCIwAIAP8G0EOB7CCwA8BMEFsD3EFgA4CdYiwXwPQQWAPgJRlgA30NgAYCfYPE4wPcQWADgJxpHWIqLi9XQ0GBwNQCkFgaWpUuXKjU1VWFhYcrMzFR+fv5Fj3311VdlsViabGFhYU2Oufvuu887Zty4cS0pDQBaLT4+XhEREXI4HDp06JDR5QBQCwLL2rVrlZubq3nz5mnnzp0aNGiQxo4dq4qKioueExkZqaNHj7q2C/0HYNy4cU2Oeeutt9wtDQA8wmKxKD09XRKNt4CvcDuwLFq0SFOmTFFOTo769u2r5cuXKyIiQqtWrbroORaLRfHx8a4tLi7uvGNsNluTYzp27OhuaQDgMfSxAL7FrcDS0NCgHTt2KDs7+8cLBAUpOztbW7Zsueh5p06dUkpKipKTkzV+/Hh9++235x2zceNGxcbGqlevXpo2bZq+//77i16vvr5eNTU1TTYA8CTuFAJ8i1uBpbKyUna7/bwRkri4OJWVlV3wnF69emnVqlX66KOP9MYbb8jhcGjkyJE6fPiw65hx48bptddeU15enp5++mlt2rRJN9xwg+x2+wWvuXDhQkVFRbm25ORkdz4GAFwWgQXwLcFt/QZZWVnKyspy/Txy5Ej16dNHL730kp588klJ0qRJk1yvDxgwQAMHDlS3bt20ceNGXXvtteddc/bs2crNzXX9XFNTQ2gB4FEsHgf4FrdGWLp06SKr1ary8vIm+8vLyxUfH9+sa4SEhGjIkCGX/I9Aenq6unTpctFjbDabIiMjm2wA4EmNgaWwsFAOh8PgagC4FVhCQ0OVkZGhvLw81z6Hw6G8vLwmoyiXYrfbtWvXLiUkJFz0mMOHD+v777+/5DEA0JZSUlIUHBys+vp6lZaWGl0OEPDcvksoNzdXK1eu1OrVq7V7925NmzZNtbW1ysnJkSRNnjxZs2fPdh3/xBNP6LPPPlNhYaF27typO++8U4cOHdK9994r6R8Nub/+9a/11Vdf6eDBg8rLy9P48ePVvXt3jR071kMfEwDcExwcrJSUFEn0sQC+wO0elokTJ+rYsWOaO3euysrKNHjwYG3YsMHViFtcXKygoB9z0PHjxzVlyhSVlZWpY8eOysjI0Jdffqm+fftKkqxWq7755hutXr1aJ06cUGJioq6//no9+eSTstlsHvqYAOC+bt266cCBAzpw4IBGjx5tdDlAQLM4nU6n0UW0Vk1NjaKiolRdXU0/CwCPuf/++7Vs2TLNnj1bCxYsMLocwHTc+f3Ns4QA4CJYPA7wHQQWALgI1mIBfAeBBQAu4ty1WEwwew74NQILAFxE4wMQq6urVVVVZXA1QGAjsADARURERLjWg2JaCDAWgQUALoHGW8A3EFgA4BJovAV8A4EFAC6BwAL4BgILAFwCT20GfAOBBQAugR4WwDcQWADgEhpHWI4ePaoffvjB4GqAwEVgAYBL6NSpk6KjoyVJhYWFxhYDBDACCwBcBn0sgPEILABwGdwpBBiPwAIAl0HjLWA8AgsAXAYjLIDxCCwAcBn0sADGI7AAwGU0BpZDhw7pzJkzBlcDBCYCCwBcRmJiosLCwmS321VcXGx0OUBAIrAAwGUEBQUpPT1dEn0sgFEILADQDDTeAsYisABAM9B4CxiLwAIAzcBaLICxCCwA0AxMCQHGIrAAQDOcG1icTqfB1QCBh8ACAM2QkpKioKAg1dXV6ejRo0aXAwQcAgsANENoaKi6du0qiWkhwAgEFgBoJhpvAeMQWACgmWi8BYxDYAGAZiKwAMYhsABAM7F4HGAcAgsANBM9LIBxCCwA0EyND0CsqqrSiRMnjC0GCDAEFgBopvbt2ysuLk4SoyyAtxFYAMAN9LEAxiCwAIAbuFMIMAaBBQDcQOMtYAwCCwC4gREWwBgEFgBwAz0sgDEILADghsbAcuTIEdXV1RlcDRA4CCwA4IYuXbooMjJSklRUVGRwNUDgILAAgBssFgt9LIABCCwA4CYCC+B9BBYAcBONt4D3EVgAwE2MsADeR2ABADexeBzgfQQWAHBT4wjLwYMHdfbsWYOrAQIDgQUA3JSUlKTQ0FCdOXNGJSUlRpcDBAQCCwC4yWq1Ki0tTRLTQoC3EFgAoAXoYwG8i8ACAC3AnUKAdxFYAKAFCCyAdxFYAKAFWDwO8C4CCwC0wLkjLE6n0+BqAPNrUWBZunSpUlNTFRYWpszMTOXn51/02FdffVUWi6XJFhYW1uQYp9OpuXPnKiEhQeHh4crOzta+fftaUhoAeEVaWposFotqa2tVUVFhdDmA6bkdWNauXavc3FzNmzdPO3fu1KBBgzR27NhL/oWNjIzU0aNHXduhQ4eavP6HP/xBS5Ys0fLly7V161a1a9dOY8eO1enTp93/RADgBTabTcnJyZLoYwG8we3AsmjRIk2ZMkU5OTnq27evli9froiICK1ateqi51gsFsXHx7u2uLg412tOp1OLFy/W448/rvHjx2vgwIF67bXXVFpaqg8//LBFHwoAvIE+FsB73AosDQ0N2rFjh7Kzs3+8QFCQsrOztWXLloued+rUKaWkpCg5OVnjx4/Xt99+63qtqKhIZWVlTa4ZFRWlzMzMi16zvr5eNTU1TTYA8DbuFAK8x63AUllZKbvd3mSERJLi4uJUVlZ2wXN69eqlVatW6aOPPtIbb7whh8OhkSNH6vDhw5LkOs+day5cuFBRUVGurXFYFgC8icXjAO9p87uEsrKyNHnyZA0ePFijR4/W+++/r5iYGL300kstvubs2bNVXV3t2niWBwAjMMICeI9bgaVLly6yWq0qLy9vsr+8vFzx8fHNukZISIiGDBnimvNtPM+da9psNkVGRjbZAMDbCCyA97gVWEJDQ5WRkaG8vDzXPofDoby8PGVlZTXrGna7Xbt27VJCQoKkf9waGB8f3+SaNTU12rp1a7OvCQBGaAwsx44do5cOaGNuTwnl5uZq5cqVWr16tXbv3q1p06aptrZWOTk5kqTJkydr9uzZruOfeOIJffbZZyosLNTOnTt155136tChQ7r33nsl/eMOopkzZ2r+/Plat26ddu3apcmTJysxMVETJkzwzKcEgDYQGRmpmJgYSYyyAG0t2N0TJk6cqGPHjmnu3LkqKyvT4MGDtWHDBlfTbHFxsYKCfsxBx48f15QpU1RWVqaOHTsqIyNDX375pfr27es65je/+Y1qa2s1depUnThxQj/72c+0YcOG8xaYAwBf061bNx07dkwHDhzQkCFDjC4HMC2L0wRrStfU1CgqKkrV1dX0swDwqjvvvFNr1qzRU089pccee8zocgC/4s7vb54lBACtwOJxgHcQWACgFbhTCPAOAgsAtAKLxwHeQWABgFZoHGEpKSlRfX29wdUA5kVgAYBWiI2NVbt27eR0OlVUVGR0OYBpEVgAoBUsFgt9LIAXEFgAoJXoYwHaHoEFAFqJERag7RFYAKCVCCxA2yOwAEArsXgc0PYILADQSo2BpaioSHa73eBqAHMisABAKyUnJyskJEQNDQ06cuSI0eUApkRgAYBWCg4OVmpqqiT6WIC2QmABAA+gjwVoWwQWAPAA7hQC2haBBQA8gMXjgLZFYAEAD2CEBWhbBBYA8IBzA4vT6TS4GsB8CCwA4AFpaWmSpJqaGlVWVhpcDWA+BBYA8IDw8HAlJSVJYloIaAsEFgDwEBpvgbZDYAEAD6HxFmg7BBYA8BAWjwPaDoEFADyEERag7RBYAMBD6GEB2g6BBQA8pHGEpby8XKdOnTK4GsBcCCwA4CHR0dHq1KmTJEZZAE8jsACAB9HHArQNAgsAeBCBBWgbBBYA8CAab4G2QWABAA9ihAVoGwQWAPAgFo8D2gaBBQA8qDGwFBcXq6GhweBqAPMgsACAByUkJCg8PFwOh0OHDh0yuhzANAgsAOBBFouFPhagDQQbXQAAmE23bt1UUFCg7du3q0+fPkaXA3hMSkqKYe9NYAEAD2scYZkzZ47mzJljcDWAZ9hsNp0+fdqw9yewAICH/epXv9KaNWtUXV1tdCmAx9hsNkPfn8ACAB6WlZWlsrIyo8sATIWmWwAA4PMILAAAwOcRWAAAgM8jsAAAAJ9HYAEAAD6PwAIAAHwegQUAAPg8AgsAAPB5BBYAAODzCCwAAMDnEVgAAIDPI7AAAACfR2ABAAA+j8ACAAB8XrDRBXiC0+mUJNXU1BhcCQAAaK7G39uNv8cvxRSB5eTJk5Kk5ORkgysBAADuOnnypKKioi55jMXZnFjj4xwOh0pLS9WhQwdZLBaPXrumpkbJyckqKSlRZGSkR6+NH/E9ewffs/fwXXsH37N3tNX37HQ6dfLkSSUmJioo6NJdKqYYYQkKCtIVV1zRpu8RGRnJXwYv4Hv2Dr5n7+G79g6+Z+9oi+/5ciMrjWi6BQAAPo/AAgAAfB6B5TJsNpvmzZsnm81mdCmmxvfsHXzP3sN37R18z97hC9+zKZpuAQCAuTHCAgAAfB6BBQAA+DwCCwAA8HkEFgAA4PMILM108OBB3XPPPUpLS1N4eLi6deumefPmqaGhwejSTGHp0qVKTU1VWFiYMjMzlZ+fb3RJprJw4UINGzZMHTp0UGxsrCZMmKA9e/YYXZbpPfXUU7JYLJo5c6bRpZjOkSNHdOedd6pz584KDw/XgAEDtH37dqPLMhW73a45c+Y0+b335JNPNuu5P23BFCvdesPf//53ORwOvfTSS+revbsKCgo0ZcoU1dbW6tlnnzW6PL+2du1a5ebmavny5crMzNTixYs1duxY7dmzR7GxsUaXZwqbNm3S9OnTNWzYMJ09e1a//e1vdf311+u7775Tu3btjC7PlLZt26aXXnpJAwcONLoU0zl+/LhGjRqlq6++Wp988oliYmK0b98+dezY0ejSTOXpp5/WsmXLtHr1avXr10/bt29XTk6OoqKi9NBDD3m9Hm5rboVnnnlGy5YtU2FhodGl+LXMzEwNGzZML774oqR/PBsqOTlZDz74oGbNmmVwdeZ07NgxxcbGatOmTfr5z39udDmmc+rUKV155ZX6z//8T82fP1+DBw/W4sWLjS7LNGbNmqW//vWv+t///V+jSzG1X/ziF4qLi9PLL7/s2nfLLbcoPDxcb7zxhtfrYUqoFaqrq9WpUyejy/BrDQ0N2rFjh7Kzs137goKClJ2drS1bthhYmblVV1dLEv/+tpHp06frpptuavLvNTxn3bp1Gjp0qG699VbFxsZqyJAhWrlypdFlmc7IkSOVl5envXv3SpL+7//+T5s3b9YNN9xgSD1MCbXQ/v379cILLzAd1EqVlZWy2+2Ki4trsj8uLk5///vfDarK3BwOh2bOnKlRo0apf//+RpdjOm+//bZ27typbdu2GV2KaRUWFmrZsmXKzc3Vb3/7W23btk0PPfSQQkNDdddddxldnmnMmjVLNTU16t27t6xWq+x2u37/+9/rjjvuMKSegB9hmTVrliwWyyW3n/7iPHLkiMaNG6dbb71VU6ZMMahyoGWmT5+ugoICvf3220aXYjolJSWaMWOG1qxZo7CwMKPLMS2Hw6Err7xSCxYs0JAhQzR16lRNmTJFy5cvN7o0U3nnnXe0Zs0avfnmm9q5c6dWr16tZ599VqtXrzaknoAfYXnkkUd09913X/KY9PR0159LS0t19dVXa+TIkVqxYkUbV2d+Xbp0kdVqVXl5eZP95eXlio+PN6gq83rggQf0X//1X/rLX/6iK664wuhyTGfHjh2qqKjQlVde6dpnt9v1l7/8RS+++KLq6+tltVoNrNAcEhIS1Ldv3yb7+vTpoz/96U8GVWROv/71rzVr1ixNmjRJkjRgwAAdOnRICxcuNGQkK+ADS0xMjGJiYpp17JEjR3T11VcrIyNDr7zyioKCAn6AqtVCQ0OVkZGhvLw8TZgwQdI//u8pLy9PDzzwgLHFmYjT6dSDDz6oDz74QBs3blRaWprRJZnStddeq127djXZl5OTo969e+uxxx4jrHjIqFGjzrstf+/evUpJSTGoInP64Ycfzvs9Z7Va5XA4DKkn4ANLcx05ckRjxoxRSkqKnn32WR07dsz1GiMBrZObm6u77rpLQ4cO1fDhw7V48WLV1tYqJyfH6NJMY/r06XrzzTf10UcfqUOHDiorK5MkRUVFKTw83ODqzKNDhw7n9QW1a9dOnTt3pl/Igx5++GGNHDlSCxYs0G233ab8/HytWLGCUW8Pu/nmm/X73/9eXbt2Vb9+/fS3v/1NixYt0r/+678aU5ATzfLKK684JV1wQ+u98MILzq5duzpDQ0Odw4cPd3711VdGl2QqF/t395VXXjG6NNMbPXq0c8aMGUaXYTp//vOfnf3793fabDZn7969nStWrDC6JNOpqalxzpgxw9m1a1dnWFiYMz093fm73/3OWV9fb0g9rMMCAAB8Hk0YAADA5xFYAACAzyOwAAAAn0dgAQAAPo/AAgAAfB6BBQAA+DwCCwAA8HkEFgAA4PMILAAMNWbMGM2cOfOir6empmrx4sVeqweAb+JZQgB82rZt29SuXTujywBgMAILAJ/W3KepAzA3poQAGO7s2bN64IEHFBUVpS5dumjOnDlqfMzZT6eELBaL/vjHP+qXv/ylIiIi1KNHD61bt86gygF4C4EFgOFWr16t4OBg5efn6z/+4z+0aNEi/fGPf7zo8f/v//0/3Xbbbfrmm29044036o477lBVVZUXKwbgbQQWAIZLTk7W888/r169eumOO+7Qgw8+qOeff/6ix9999926/fbb1b17dy1YsECnTp1Sfn6+FysG4G0EFgCGGzFihCwWi+vnrKws7du3T3a7/YLHDxw40PXndu3aKTIyUhUVFW1eJwDjEFgA+J2QkJAmP1ssFjkcDoOqAeANBBYAhtu6dWuTn7/66iv16NFDVqvVoIoA+BoCCwDDFRcXKzc3V3v27NFbb72lF154QTNmzDC6LAA+hHVYABhu8uTJqqur0/Dhw2W1WjVjxgxNnTrV6LIA+BCLs3GxAwAAAB/FlBAAAPB5BBYAAODzCCwAAMDnEVgAAIDPI7AAAACfR2ABAAA+j8ACAAB8HoEFAAD4PAILAADweQQWAADg8wgsAADA5/1/t0yxrvlo1bsAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHGCAYAAABXQNCQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAuyElEQVR4nO3de1zUdd7//+cwCAjJuIIMYqNoB+1AUghEdW14xYplB9rWpFumsR52u9Qs2gp2r7DtRKc1KtlYazKvsvCytdt29BC3cuNaExc6cW3R0SAVEEtGscCY+f1x3Zx+8wWUQWDejo/77fa+3Zz35/1+z+vzuZnz7PP5zGcsHo/HIwAAAIOFBLoAAACAIyGwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgA9JtnnnlGFovF2yIiInTqqadq0aJFampq8hn7+uuvy2KxKCEhQW6329t///33y2KxaMOGDd2+xyWXXCKbzaadO3f2qqZ169Zp5syZGj9+vCIjIzVhwgTdcsst2rt3b5/3E8Dgs/BbQgD6yzPPPKO8vDzdddddGjdunH744QdVVlbq2Wef1dixY1VbW6vIyEhJ0rXXXqt//OMf2r59uzZt2qSsrCxJ0sGDB5WSkqK2tjbV1tZq6NCh3vXXrl2rq6++WqWlpfqP//iPXtUUGxurhIQE5eTkaMyYMfroo49UVlam8ePHq6amxmd9AAbzAEA/WblypUeSZ9u2bT79+fn5Hkme559/3uPxeDz79+/3REVFeR577DHP2Wef7bn++ut9xm/ZssUTEhLiKSws9Pa5XC5PQkKC59xzz/V0dnb2uqa33nqrS9+qVas8kjxPPvmkH3sHIJC4JARgwP37v/+7JOmrr76SJL300kv6/vvvNWPGDOXm5mrdunX64YcfvOPPPfdc/fa3v9XDDz+sf/3rX5Kk//zP/1Rzc7NWrFihkJDe/9OVmZnZpe/KK6+UJH388cd93SUAg4zAAmDAffHFF5KkmJgYSdLq1as1ZcoUxcfHKzc3V/v27dMrr7ziM6e4uFgjR47Ub37zG1VXV6u0tFS/+93vlJSUdNT1NDY2Svq/y0UAjg0EFgD9rrW1VS0tLfrmm2+0Zs0a3XXXXRo6dKguvfRSNTc3680331Rubq4kacyYMcrIyNDq1at91oiOjtZjjz2myspKTZ06VWPHjlVRUVG/1PfAAw/IarXqV7/6Vb+sB2DgEVgA9LusrCyNHDlSDodDubm5OuGEE/TSSy9p9OjRKi8vV0hIiK666irv+GuuuUZvvPGGvvvuO591rrrqKl1yySX69ttvVVpa2i83yD7//PNyOp265ZZbdMoppxz1egAGR2igCwAQfEpLS3XqqacqNDRUdrtdEyZM8N538txzzyktLU179uzRnj17JElnn322Ojo6tHbtWi1YsMBnrdTUVL3++uuaPHnyUdf1zjvvaO7cucrOzta999571OsBGDwEFgD9Li0trduA8dlnn2nbtm2S1O3ZjdWrV3cJLP3lgw8+0OWXX64zzzxTL774okJD+ecPOJbwXyyAQbN69WoNGTJEzz77rKxWq8+2yspKPfbYY6qvr9eYMWP69X2/+OILTZs2TXFxcXr99dd1wgkn9Ov6AAYegQXAoFm9erX+7d/+TTNnzuyyLSMjQ4899pheeOEF3X777f32no2NjZo6dapCQkK0YcMGjRw5st/WBjB4CCwABsXWrVv1+eefa9GiRd1uHz16tM455xytXr26XwPLtGnT9OWXX+q2225TZWWlKisrvdvsdrt+8Ytf9Nt7ARg4BBYAg+LQ15Yvu+yyHsdcdtlluvPOO/Xhhx/qrLPO6pf3/eCDDyRJDz74YJdtF154IYEFOEbwW0IAAMB4PIcFAAAYj0tCAI5J3377rTo6OnrcbrVaucEWCCJcEgJwTMrMzNTmzZt73D527Fht37598AoCMKAILACOSdXV1V0e5f//N3ToUJ1//vmDWBGAgURgAQAAxguae1jcbrd27typYcOGyWKxBLocAADQCx6PR/v27VNCQoL3N8e6EzSBZefOnXI4HIEuAwAA9EFDQ4NOPPHEHrcHTWAZNmyYpP/b4ejo6ABXAwAAesPlcsnhcHg/x3sSNIHl0GWg6OhoAgsAAMeYI93OwYPjAACA8QgsAADAeAQWAABgvKC5hwUAABN1dnbq4MGDgS4jYIYMGSKr1XrU6xBYAAAYAB6PR42Njdq7d2+gSwm44cOHKz4+/qiek0ZgAQBgABwKK3FxcYqMjDwuH2rq8Xh04MABNTc3S5JGjRrV57UILAAA9LPOzk5vWImJiQl0OQE1dOhQSVJzc7Pi4uL6fHmIm24BAOhnh+5ZiYyMDHAlZjh0HI7mXh4CCwAAA+R4vAzUnf44DgQWAABgPAILAAAwHoEFAAAclcTERJWUlAzoexBYAACA8QgsAADAeDyHBQCAAXboAWqB4O9D6zIzM3XmmWdKkp599lkNGTJEN9xwg+666y5ZLBY1Nzdr7ty5evPNNxUfH6977rlnoEr30aczLKWlpUpMTFRERITS09NVVVXV49jMzExZLJYubfr06T7jPv74Y11++eWy2WyKiopSamqq6uvr+1IeAABGOXDggE444YSAtL4EpVWrVik0NFRVVVV69NFHtWzZMj311FOSpOuvv14NDQ1666239OKLL+rPf/6z90m2A8nvMyxr1qxRfn6+ysrKlJ6erpKSEmVnZ6uurk5xcXFdxq9bt04dHR3e13v27NGkSZM0Y8YMb98XX3yhCy64QHPnztUf//hHRUdH63//938VERHRx90CAAB95XA49Mgjj8hisWjChAn66KOP9Mgjj+jCCy/UG2+8oaqqKqWmpkqSnE6nTjvttAGvye/AsmzZMs2fP195eXmSpLKyMr322mt6+umnVVBQ0GX8iBEjfF6Xl5crMjLSJ7D84Q9/0CWXXKIHH3zQ23fSSSf5WxoAAEaKjIzU/v37A/be/jr33HN9LiNlZGToT3/6kz7++GOFhoYqJSXFu23ixIkaPnx4f5R6WH4Flo6ODlVXV6uwsNDbFxISoqysLG3ZsqVXazidTuXm5ioqKkqS5Ha79dprr+m2225Tdna23nvvPY0bN06FhYXKycnpcZ329na1t7d7X7tcLn92BQCAQWOxWLyfe+gbv+5haWlpUWdnp+x2u0+/3W5XY2PjEedXVVWptrZW8+bN8/Y1Nzdr//79uv/++zVt2jRt3LhRV155pX75y19q8+bNPa5VXFwsm83mbQ6Hw59dAQAAPdi6davP63fffVennHKKJk6cqB9//FHV1dXebXV1ddq7d++A1zSoX2t2Op1KSkpSWlqat8/tdkuSrrjiCt18881KTk5WQUGBLr30UpWVlfW4VmFhoVpbW72toaFhwOsHAOB4UF9fr/z8fNXV1emFF17Q448/riVLlmjChAmaNm2afvOb32jr1q2qrq7WvHnzvL/IPJD8CiyxsbGyWq1qamry6W9qalJ8fPxh57a1tam8vFxz587tsmZoaKhOP/10n/7TTjvtsN8SCg8PV3R0tE8DAABHb/bs2fr++++VlpamhQsXasmSJVqwYIEkaeXKlUpISNCFF16oX/7yl1qwYEG3X7rpb37dwxIWFqaUlBRVVFR47y9xu92qqKjQokWLDjt37dq1am9v16xZs7qsmZqaqrq6Op/+Tz/9VGPHjvWnPAAA0A+GDBmikpISPfHEE122xcfH69VXX/Xpu+666wa8Jr+/JZSfn685c+Zo8uTJSktLU0lJidra2rzfGpo9e7ZGjx6t4uJin3lOp1M5OTmKiYnpsuatt96qmTNn6uc//7mmTJmi9evX65VXXtHbb7/dt70CAABBxe/AMnPmTO3evVtFRUVqbGxUcnKy1q9f770Rt76+XiEhvlea6urqVFlZqY0bN3a75pVXXqmysjIVFxfrxhtv1IQJE/TXv/5VF1xwQR92CQAABBuLx+PxBLqI/uByuWSz2dTa2sr9LACAgPrhhx/01Vdfady4cTwEVYc/Hr39/ObHDwEAGCBBck7gqPXHcSCwAADQz4YMGSJJAfvBQ9McOg6Hjktf8GvNAAD0M6vVquHDh3t/FNDfX0wOFod+pbq5uVnDhw+X1Wrt81oEFgAABsCh55MNxi8Zm2748OFHfF7bkRBYAAAYABaLRaNGjVJcXJwOHjwY6HICZsiQIUd1ZuUQAgsAAAPIarX2ywf28Y6bbgEAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjNenwFJaWqrExERFREQoPT1dVVVVPY7NzMyUxWLp0qZPn+4dc/3113fZPm3atL6UBgAAglCovxPWrFmj/Px8lZWVKT09XSUlJcrOzlZdXZ3i4uK6jF+3bp06Ojq8r/fs2aNJkyZpxowZPuOmTZumlStXel+Hh4f7WxoAAAhSfgeWZcuWaf78+crLy5MklZWV6bXXXtPTTz+tgoKCLuNHjBjh87q8vFyRkZFdAkt4eLji4+N7XUd7e7va29u9r10ulz+7AQAAjiF+XRLq6OhQdXW1srKyflogJERZWVnasmVLr9ZwOp3Kzc1VVFSUT//bb7+tuLg4TZgwQTfccIP27Nlz2HWKi4tls9m8zeFw+LMrAADgGOJXYGlpaVFnZ6fsdrtPv91uV2Nj4xHnV1VVqba2VvPmzfPpnzZtmv7rv/5LFRUVeuCBB7R582ZdfPHF6uzs7HGtwsJCtba2eltDQ4M/uwIAAI4hfl8SOhpOp1NJSUlKS0vz6c/NzfX+OSkpSWeddZZOOukkvf3227rooou6XSs8PJz7XAAAOE74dYYlNjZWVqtVTU1NPv1NTU1HvP+kra1N5eXlmjt37hHfZ/z48YqNjdXnn3/uT3kAACBI+RVYwsLClJKSooqKCm+f2+1WRUWFMjIyDjt37dq1am9v16xZs474Pt9884327NmjUaNG+VMeAAAIUn4/hyU/P19PPvmkVq1apY8//lg33HCD2travN8amj17tgoLC7vMczqdysnJUUxMjE///v37deutt+rdd9/V9u3bVVFRoSuuuEInn3yysrOz+7hbAAAgmPh9D8vMmTO1e/duFRUVqbGxUcnJyVq/fr33Rtz6+nqFhPjmoLq6OlVWVmrjxo1d1rNarfrwww+1atUq7d27VwkJCZo6daruvvtu7lEBAACSJIvH4/EEuoj+4HK5ZLPZ1Nraqujo6ECXAwAAeqG3n9/8lhAAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjNenwFJaWqrExERFREQoPT1dVVVVPY7NzMyUxWLp0qZPn97t+N/+9reyWCwqKSnpS2kAACAI+R1Y1qxZo/z8fC1dulQ1NTWaNGmSsrOz1dzc3O34devWadeuXd5WW1srq9WqGTNmdBn70ksv6d1331VCQoL/ewIAAIKW34Fl2bJlmj9/vvLy8nT66aerrKxMkZGRevrpp7sdP2LECMXHx3vbpk2bFBkZ2SWw7NixQ4sXL9bq1as1ZMiQI9bR3t4ul8vl0wAAQHDyK7B0dHSourpaWVlZPy0QEqKsrCxt2bKlV2s4nU7l5uYqKirK2+d2u3Xdddfp1ltv1RlnnNGrdYqLi2Wz2bzN4XD4sysAAOAY4ldgaWlpUWdnp+x2u0+/3W5XY2PjEedXVVWptrZW8+bN8+l/4IEHFBoaqhtvvLHXtRQWFqq1tdXbGhoaej0XAAAcW0IH882cTqeSkpKUlpbm7auurtajjz6qmpoaWSyWXq8VHh6u8PDwgSgTAAAYxq8zLLGxsbJarWpqavLpb2pqUnx8/GHntrW1qby8XHPnzvXpf+edd9Tc3KwxY8YoNDRUoaGh+vrrr3XLLbcoMTHRn/IAAECQ8iuwhIWFKSUlRRUVFd4+t9utiooKZWRkHHbu2rVr1d7erlmzZvn0X3fddfrwww/1/vvve1tCQoJuvfVWbdiwwZ/yAABAkPL7klB+fr7mzJmjyZMnKy0tTSUlJWpra1NeXp4kafbs2Ro9erSKi4t95jmdTuXk5CgmJsanPyYmpkvfkCFDFB8frwkTJvhbHgAACEJ+B5aZM2dq9+7dKioqUmNjo5KTk7V+/Xrvjbj19fUKCfE9cVNXV6fKykpt3Lixf6oGAADHFYvH4/EEuoj+4HK5ZLPZ1Nraqujo6ECXAwAAeqG3n9/8lhAAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjNenwFJaWqrExERFREQoPT1dVVVVPY7NzMyUxWLp0qZPn+4dc+edd2rixImKiorSz372M2VlZWnr1q19KQ0AAAQhvwPLmjVrlJ+fr6VLl6qmpkaTJk1Sdna2mpubux2/bt067dq1y9tqa2tltVo1Y8YM75hTTz1Vy5cv10cffaTKykolJiZq6tSp2r17d9/3DAAABA2Lx+Px+DMhPT1dqampWr58uSTJ7XbL4XBo8eLFKigoOOL8kpISFRUVadeuXYqKiup2jMvlks1m05tvvqmLLrqoV3UdmtPa2qro6Oje7xAAAAiY3n5++3WGpaOjQ9XV1crKyvppgZAQZWVlacuWLb1aw+l0Kjc3t8ew0tHRoRUrVshms2nSpEk9rtPe3i6Xy+XTAABAcPIrsLS0tKizs1N2u92n3263q7Gx8Yjzq6qqVFtbq3nz5nXZ9uqrr+qEE05QRESEHnnkEW3atEmxsbE9rlVcXCybzeZtDofDn10BAADHkEH9lpDT6VRSUpLS0tK6bJsyZYref/99/eMf/9C0adN09dVX93hfjCQVFhaqtbXV2xoaGgaydAAAEEB+BZbY2FhZrVY1NTX59Dc1NSk+Pv6wc9va2lReXq65c+d2uz0qKkonn3yyzj33XDmdToWGhsrpdPa4Xnh4uKKjo30aAAAITn4FlrCwMKWkpKiiosLb53a7VVFRoYyMjMPOXbt2rdrb2zVr1qxevZfb7VZ7e7s/5QEAgCAV6u+E/Px8zZkzR5MnT1ZaWppKSkrU1tamvLw8SdLs2bM1evRoFRcX+8xzOp3KyclRTEyMT39bW5vuvfdeXX755Ro1apRaWlpUWlqqHTt2+Hz1GQAAHL/8DiwzZ87U7t27VVRUpMbGRiUnJ2v9+vXeG3Hr6+sVEuJ74qaurk6VlZXauHFjl/WsVqs++eQTrVq1Si0tLYqJiVFqaqreeecdnXHGGX3cLQAAEEz8fg6LqXgOCwAAx54BeQ4LAABAIBBYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIwXGugCTObxeHTgwIFAlwEAgBEiIyNlsVgC8t4ElsM4cOCATjjhhECXAQCAEfbv36+oqKiAvDeXhAAAgPE4w3IYkZGR2r9/f6DLAADACJGRkQF7bwLLYVgsloCd+gIAAD/hkhAAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgvD4FltLSUiUmJioiIkLp6emqqqrqcWxmZqYsFkuXNn36dEnSwYMHdfvttyspKUlRUVFKSEjQ7NmztXPnzr7tEQAACDp+B5Y1a9YoPz9fS5cuVU1NjSZNmqTs7Gw1Nzd3O37dunXatWuXt9XW1spqtWrGjBmSpAMHDqimpkZ33HGHampqtG7dOtXV1enyyy8/uj0DAABBw+LxeDz+TEhPT1dqaqqWL18uSXK73XI4HFq8eLEKCgqOOL+kpERFRUXatWuXoqKiuh2zbds2paWl6euvv9aYMWO6HdPe3q729nbva5fLJYfDodbWVkVHR/uzSwAAIEBcLpdsNtsRP7/9OsPS0dGh6upqZWVl/bRASIiysrK0ZcuWXq3hdDqVm5vbY1iRpNbWVlksFg0fPrzHMcXFxbLZbN7mcDh6vR8AAODY4ldgaWlpUWdnp+x2u0+/3W5XY2PjEedXVVWptrZW8+bN63HMDz/8oNtvv13XXHPNYZNWYWGhWltbva2hoaH3OwIAAI4poYP5Zk6nU0lJSUpLS+t2+8GDB3X11VfL4/HoiSeeOOxa4eHhCg8PH4gyAQCAYfw6wxIbGyur1aqmpiaf/qamJsXHxx92bltbm8rLyzV37txutx8KK19//bU2bdrEfSgAAMDLr8ASFhamlJQUVVRUePvcbrcqKiqUkZFx2Llr165Ve3u7Zs2a1WXbobDy2Wef6c0331RMTIw/ZQEAgCDn9yWh/Px8zZkzR5MnT1ZaWppKSkrU1tamvLw8SdLs2bM1evRoFRcX+8xzOp3KycnpEkYOHjyoX/3qV6qpqdGrr76qzs5O7/0wI0aMUFhYWF/3DQAABAm/A8vMmTO1e/duFRUVqbGxUcnJyVq/fr33Rtz6+nqFhPieuKmrq1NlZaU2btzYZb0dO3bo5ZdfliQlJyf7bHvrrbeUmZnpb4kAACDI+P0cFlP19nvcAADAHAPyHBYAAIBAILAAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPH6FFhKS0uVmJioiIgIpaenq6qqqsexmZmZslgsXdr06dO9Y9atW6epU6cqJiZGFotF77//fl/KAgAAQcrvwLJmzRrl5+dr6dKlqqmp0aRJk5Sdna3m5uZux69bt067du3yttraWlmtVs2YMcM7pq2tTRdccIEeeOCBvu8JAAAIWhaPx+PxZ0J6erpSU1O1fPlySZLb7ZbD4dDixYtVUFBwxPklJSUqKirSrl27FBUV5bNt+/btGjdunN577z0lJyf7U5ZcLpdsNptaW1sVHR3t11wAABAYvf389usMS0dHh6qrq5WVlfXTAiEhysrK0pYtW3q1htPpVG5ubpew4q/29na5XC6fBgAAgpNfgaWlpUWdnZ2y2+0+/Xa7XY2NjUecX1VVpdraWs2bN8+/KrtRXFwsm83mbQ6H46jXBAAAZhrUbwk5nU4lJSUpLS3tqNcqLCxUa2urtzU0NPRDhQAAwESh/gyOjY2V1WpVU1OTT39TU5Pi4+MPO7etrU3l5eW66667/K+yG+Hh4QoPD++XtQAAgNn8OsMSFhamlJQUVVRUePvcbrcqKiqUkZFx2Llr165Ve3u7Zs2a1bdKAQDAccuvMyySlJ+frzlz5mjy5MlKS0tTSUmJ2tralJeXJ0maPXu2Ro8ereLiYp95TqdTOTk5iomJ6bLmt99+q/r6eu3cuVOSVFdXJ0mKj48/4pkbAAAQ/PwOLDNnztTu3btVVFSkxsZGJScna/369d4bcevr6xUS4nvipq6uTpWVldq4cWO3a7788svewCNJubm5kqSlS5fqzjvv9LdEAAAQZPx+DoupeA4LAADHngF5DgsAAEAgEFgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHh9CiylpaVKTExURESE0tPTVVVV1ePYzMxMWSyWLm369OneMR6PR0VFRRo1apSGDh2qrKwsffbZZ30pDQAABCG/A8uaNWuUn5+vpUuXqqamRpMmTVJ2draam5u7Hb9u3Trt2rXL22pra2W1WjVjxgzvmAcffFCPPfaYysrKtHXrVkVFRSk7O1s//PBD3/cMAAAEDYvH4/H4MyE9PV2pqalavny5JMntdsvhcGjx4sUqKCg44vySkhIVFRVp165dioqKksfjUUJCgm655Rb97ne/kyS1trbKbrfrmWeeUW5ubq/qcrlcstlsam1tVXR0tD+7BAAAAqS3n99+nWHp6OhQdXW1srKyflogJERZWVnasmVLr9ZwOp3Kzc1VVFSUJOmrr75SY2Ojz5o2m03p6emHXbO9vV0ul8unAQCA4ORXYGlpaVFnZ6fsdrtPv91uV2Nj4xHnV1VVqba2VvPmzfP2HZrn75rFxcWy2Wze5nA4/NkVAABwDBnUbwk5nU4lJSUpLS3tqNcqLCxUa2urtzU0NPRDhQAAwER+BZbY2FhZrVY1NTX59Dc1NSk+Pv6wc9va2lReXq65c+f69B+a5++a4eHhio6O9mkAACA4+RVYwsLClJKSooqKCm+f2+1WRUWFMjIyDjt37dq1am9v16xZs3z6x40bp/j4eJ81XS6Xtm7desQ1AQDA8SHU3wn5+fmaM2eOJk+erLS0NJWUlKitrU15eXmSpNmzZ2v06NEqLi72med0OpWTk6OYmBiffovFoptuukn33HOPTjnlFI0bN0533HGHEhISlJOT0/c9AwAAQcPvwDJz5kzt3r1bRUVFamxsVHJystavX++9aba+vl4hIb4nburq6lRZWamNGzd2u+Ztt92mtrY2LViwQHv37tUFF1yg9evXKyIiog+7BAAAgo3fz2ExFc9hAQDg2DMgz2EBAAAIBAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIzXp8BSWlqqxMRERUREKD09XVVVVYcdv3fvXi1cuFCjRo1SeHi4Tj31VL3++uve7fv27dNNN92ksWPHaujQoTrvvPO0bdu2vpQGAACCkN+BZc2aNcrPz9fSpUtVU1OjSZMmKTs7W83Nzd2O7+jo0C9+8Qtt375dL774ourq6vTkk09q9OjR3jHz5s3Tpk2b9Oyzz+qjjz7S1KlTlZWVpR07dvR9zwAAQNCweDwejz8T0tPTlZqaquXLl0uS3G63HA6HFi9erIKCgi7jy8rK9NBDD+mTTz7RkCFDumz//vvvNWzYMP3tb3/T9OnTvf0pKSm6+OKLdc8993RbR3t7u9rb272vXS6XHA6HWltbFR0d7c8uAQCAAHG5XLLZbEf8/PbrDEtHR4eqq6uVlZX10wIhIcrKytKWLVu6nfPyyy8rIyNDCxculN1u15lnnqn77rtPnZ2dkqQff/xRnZ2dioiI8Jk3dOhQVVZW9lhLcXGxbDabtzkcDn92BQAAHEP8CiwtLS3q7OyU3W736bfb7WpsbOx2zpdffqkXX3xRnZ2dev3113XHHXfoT3/6k/fMybBhw5SRkaG7775bO3fuVGdnp5577jlt2bJFu3bt6rGWwsJCtba2eltDQ4M/uwIAAI4hoQP9Bm63W3FxcVqxYoWsVqtSUlK0Y8cOPfTQQ1q6dKkk6dlnn9Wvf/1rjR49WlarVeecc46uueYaVVdX97hueHi4wsPDB7p8AABgAL/OsMTGxspqtaqpqcmnv6mpSfHx8d3OGTVqlE499VRZrVZv32mnnabGxkZ1dHRIkk466SRt3rxZ+/fvV0NDg6qqqnTw4EGNHz/e3/0BAABByK/AEhYWppSUFFVUVHj73G63KioqlJGR0e2c888/X59//rncbre379NPP9WoUaMUFhbmMzYqKkqjRo3Sd999pw0bNuiKK67wpzwAABCk/P5ac35+vp588kmtWrVKH3/8sW644Qa1tbUpLy9PkjR79mwVFhZ6x99www369ttvtWTJEn366ad67bXXdN9992nhwoXeMRs2bND69ev11VdfadOmTZoyZYomTpzoXRMAABzf/L6HZebMmdq9e7eKiorU2Nio5ORkrV+/3nsjbn19vUJCfspBDodDGzZs0M0336yzzjpLo0eP1pIlS3T77bd7x7S2tqqwsFDffPONRowYoauuukr33ntvt1+DBgAAxx+/n8Niqt5+jxsAAJhjQJ7DAgAAEAgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjhQa6gP7i8XgkSS6XK8CVAACA3jr0uX3oc7wnQRNY9u3bJ0lyOBwBrgQAAPhr3759stlsPW63eI4UaY4RbrdbO3fu1LBhw2SxWPptXZfLJYfDoYaGBkVHR/fbuvDFcR48HOvBwXEeHBznwTGQx9nj8Wjfvn1KSEhQSEjPd6oEzRmWkJAQnXjiiQO2fnR0NP8xDAKO8+DhWA8OjvPg4DgPjoE6zoc7s3IIN90CAADjEVgAAIDxCCxHEB4erqVLlyo8PDzQpQQ1jvPg4VgPDo7z4OA4Dw4TjnPQ3HQLAACCF2dYAACA8QgsAADAeAQWAABgPAILAAAwHoGll7Zv3665c+dq3LhxGjp0qE466SQtXbpUHR0dgS4tKJSWlioxMVERERFKT09XVVVVoEsKKsXFxUpNTdWwYcMUFxennJwc1dXVBbqsoHf//ffLYrHopptuCnQpQWfHjh2aNWuWYmJiNHToUCUlJemf//xnoMsKOp2dnbrjjjt8PvvuvvvuI/7uz0AImifdDrRPPvlEbrdbf/nLX3TyySertrZW8+fPV1tbmx5++OFAl3dMW7NmjfLz81VWVqb09HSVlJQoOztbdXV1iouLC3R5QWHz5s1auHChUlNT9eOPP+r3v/+9pk6dqn/961+KiooKdHlBadu2bfrLX/6is846K9ClBJ3vvvtO559/vqZMmaI33nhDI0eO1Geffaaf/exngS4t6DzwwAN64okntGrVKp1xxhn65z//qby8PNlsNt14442DWgtfaz4KDz30kJ544gl9+eWXgS7lmJaenq7U1FQtX75c0v/9LpTD4dDixYtVUFAQ4OqC0+7duxUXF6fNmzfr5z//eaDLCTr79+/XOeecoz//+c+65557lJycrJKSkkCXFTQKCgr0P//zP3rnnXcCXUrQu/TSS2W32+V0Or19V111lYYOHarnnntuUGvhktBRaG1t1YgRIwJdxjGto6ND1dXVysrK8vaFhIQoKytLW7ZsCWBlwa21tVWS+Ps7QBYuXKjp06f7/L1G/3n55Zc1efJkzZgxQ3FxcTr77LP15JNPBrqsoHTeeeepoqJCn376qSTpgw8+UGVlpS6++OJBr4VLQn30+eef6/HHH+dy0FFqaWlRZ2en7Ha7T7/dbtcnn3wSoKqCm9vt1k033aTzzz9fZ555ZqDLCTrl5eWqqanRtm3bAl1K0Pryyy/1xBNPKD8/X7///e+1bds23XjjjQoLC9OcOXMCXV5QKSgokMvl0sSJE2W1WtXZ2al7771X11577aDXctyfYSkoKJDFYjls+38/OHfs2KFp06ZpxowZmj9/foAqB/pm4cKFqq2tVXl5eaBLCToNDQ1asmSJVq9erYiIiECXE7TcbrfOOecc3XfffTr77LO1YMECzZ8/X2VlZYEuLej893//t1avXq3nn39eNTU1WrVqlR5++GGtWrVq0Gs57s+w3HLLLbr++usPO2b8+PHeP+/cuVNTpkzReeedpxUrVgxwdcEvNjZWVqtVTU1NPv1NTU2Kj48PUFXBa9GiRXr11Vf197//XSeeeGKgywk61dXVam5u1jnnnOPt6+zs1N///nctX75c7e3tslqtAawwOIwaNUqnn366T99pp52mv/71rwGqKHjdeuutKigoUG5uriQpKSlJX3/9tYqLiwf9bNZxH1hGjhypkSNH9mrsjh07NGXKFKWkpGjlypUKCTnuT1AdtbCwMKWkpKiiokI5OTmS/u//nioqKrRo0aLAFhdEPB6PFi9erJdeeklvv/22xo0bF+iSgtJFF12kjz76yKcvLy9PEydO1O23305Y6Sfnn39+l6/lf/rppxo7dmyAKgpeBw4c6PJZZ7Va5Xa7B72W4z6w9NaOHTuUmZmpsWPH6uGHH9bu3bu92zgTcHTy8/M1Z84cTZ48WWlpaSopKVFbW5vy8vICXVrQWLhwoZ5//nn97W9/07Bhw9TY2ChJstlsGjp0aICrCx7Dhg3rcl9QVFSUYmJiuF+oH918880677zzdN999+nqq69WVVWVVqxYwVnvAXDZZZfp3nvv1ZgxY3TGGWfovffe07Jly/TrX/968IvxoFdWrlzpkdRtw9F7/PHHPWPGjPGEhYV50tLSPO+++26gSwoqPf3dXblyZaBLC3oXXnihZ8mSJYEuI+i88sornjPPPNMTHh7umThxomfFihWBLikouVwuz5IlSzxjxozxREREeMaPH+/5wx/+4Glvbx/0WngOCwAAMB43YQAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAiozMxM3XTTTT1uT0xMVElJyaDVA8BM/JYQAKNt27ZNUVFRgS4DQIARWAAYrbe/pg4guHFJCEDA/fjjj1q0aJFsNptiY2N1xx136NDPnP2/l4QsFoueeuopXXnllYqMjNQpp5yil19+OUCVAxgsBBYAAbdq1SqFhoaqqqpKjz76qJYtW6annnqqx/F//OMfdfXVV+vDDz/UJZdcomuvvVbffvvtIFYMYLARWAAEnMPh0COPPKIJEybo2muv1eLFi/XII4/0OP7666/XNddco5NPPln33Xef9u/fr6qqqkGsGMBgI7AACLhzzz1XFovF+zojI0OfffaZOjs7ux1/1llnef8cFRWl6OhoNTc3D3idAAKHwALgmDNkyBCf1xaLRW63O0DVABgMBBYAAbd161af1++++65OOeUUWa3WAFUEwDQEFgABV19fr/z8fNXV1emFF17Q448/riVLlgS6LAAG4TksAAJu9uzZ+v7775WWliar1aolS5ZowYIFgS4LgEEsnkMPOwAAADAUl4QAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYLz/D9qBF0KWJgM9AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHGCAYAAABXQNCQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAu6UlEQVR4nO3df1iUdb7/8dcwCAjJqCAghGK/tB8khUBkZ8ONI5Zb2ZZJV6ax/mhdNY22DXZPuP2kttaoZHWtyTxF6bHsbD/MLM7mxh5yXKiTnC2yLYNV+aElo6hgzHz/OJfTNV9EGQTm4/h8XNfnupjP/fl85n3fl9u89r7vucfidrvdAgAAMFiQvwsAAAA4EQILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQVAr3nhhRdksVg8LSwsTOedd54WLFigxsZGr7EbNmyQxWJRfHy8XC6Xp//RRx+VxWLRu+++e8z3uOaaa2Sz2bRr165u1fT6668rJydH8fHxCg0N1ZlnnqmbbrpJNTU1Pd9RAP0u2N8FAAg8DzzwgEaNGqXDhw+roqJCy5cv14YNG1RTU6Pw8HBJUllZmZKSkrRjxw7913/9l7KzsyVJd999t15++WX94he/UE1NjQYOHOhZd926dXrnnXdUWlqq+Pj4btWybds2DRkyRIsWLVJ0dLQaGhr0/PPPKz09XZWVlRo7dmzvHwAAvc8NAL1k1apVbknurVu3evXn5+e7Jblffvllt9vtdh84cMAdERHhfvrpp92XXHKJ+/bbb/caX1lZ6Q4KCnIXFhZ6+pxOpzs+Pt592WWXuTs6Ok6qzoaGBndwcLD7jjvuOKl1APQfLgkB6HM//vGPJUlff/21pP+7THPo0CFNnTpVubm5Wr9+vQ4fPuwZf9lll+nnP/+5nnjiCf3973+XJP3bv/2bmpqatHLlSgUFndx/umJiYhQeHq59+/ad1DoA+g+BBUCf+8c//iFJioqKkvR/l4MmTJiguLg45ebmav/+/XrzzTe95hQXF2vYsGG64447VFVVpdLSUv3yl79UcnJyj2rYt2+fmpubtW3bNs2ePVtOp1NXXXXVye0YgH5jcbvdbn8XASAwvPDCC8rLy9P777+vsWPH6vDhw/rrX/+q+fPn6+DBg9q+fbsGDBighIQELV++XLNnz5YkjR8/XsOGDdN//ud/eq332muv6aabbtLQoUM1ePDgTve0+GLMmDGqra2VJJ1xxhlavHix7r///pM+WwOgf3DTLYBed/QG2qNGjhypsrIyJSQk6Omnn1ZQUJBuvPFGz/ZbbrlFd999t7777jsNGTLE03/jjTfqmmuu0YYNG1RWVtbjsCJJq1atktPp1FdffaVVq1bp0KFD6ujoILAApwgCC4BeV1paqvPOO0/BwcGKjY3V6NGjPcHgpZdeUnp6uvbu3au9e/dKki655BK1t7dr3bp1mjt3rtdaaWlp2rBhg8aNG3dSNWVmZnr+zs3N1fnnny9JeuKJJ05qXQD9g8ACoNelp6cfM2Bs375dW7dulSSde+65nbaXlZV1Cix9YciQIfrxj3+ssrIyAgtwiiCwAOg3ZWVlGjBggF588UVZrVavbRUVFXr66adVV1enESNG9Hkthw4dUktLS5+/D4DeQWAB0G/Kysr0L//yL5o2bVqnbZmZmXr66af1yiuv6N577+2192xqalJMTIxX344dO1ReXn7Sl5kA9B8CC4B+sWXLFn355ZdasGDBMbcnJCTo0ksvVVlZWa8GluTkZF111VVKSUnRkCFDtH37dtntdh05ckSPPvpor70PgL7F7fEA+kVZWZkk6dprr+1yzLXXXqtt27bp008/7bX3nTdvnrZv365HH31Uv/jFL1RWVqaJEyfK4XDo8ssv77X3AdC3eA4LAAAwHmdYAACA8biHBcAp6dtvv1V7e3uX261Wq4YNG9aPFQHoS1wSAnBKysrK0ubNm7vcPnLkSO3YsaP/CgLQpwgsAE5JVVVV+u6777rcPnDgQI0fP74fKwLQlwgsAADAeAFzD4vL5dKuXbs0aNAgWSwWf5cDAAC6we12a//+/YqPjz/uj5EGTGDZtWuXEhMT/V0GAADogfr6ep155pldbg+YwDJo0CBJ/7fDkZGRfq4GAAB0h9PpVGJioudzvCsBE1iOXgaKjIwksAAAcIo50e0cPDgOAAAYj8ACAACMR2ABAADGC5h7WAAAMFFHR4eOHDni7zL8ZsCAAbJarSe9DoEFAIA+4Ha71dDQoH379vm7FL8bPHiw4uLiTuo5aQQWAAD6wNGwEhMTo/Dw8NPyoaZut1sHDx5UU1OTJGn48OE9XovAAgBAL+vo6PCElaioKH+X41cDBw6UJDU1NSkmJqbHl4e46RYAgF529J6V8PBwP1dihqPH4WTu5SGwAADQR07Hy0DH0hvHgcACAACMR2ABAADGI7AAAICTkpSUpJKSkj59DwILAAAwHoEFAAAYj+ewAADQx44+QM0ffH1oXVZWli666CJJ0osvvqgBAwZo3rx5euCBB2SxWNTU1KRZs2bp/fffV1xcnB566KG+Kt1Lj86wlJaWKikpSWFhYcrIyJDD4ehybFZWliwWS6c2efJkr3GfffaZrrvuOtlsNkVERCgtLU11dXU9KQ8AAKMcPHhQZ5xxhl9aT4LS6tWrFRwcLIfDoaeeekpLly7Vc889J0m6/fbbVV9frz//+c969dVX9Yc//MHzJNu+5PMZlrVr1yo/P18rVqxQRkaGSkpKlJOTo9raWsXExHQav379erW3t3te7927V2PHjtXUqVM9ff/4xz90xRVXaNasWbr//vsVGRmp//3f/1VYWFgPdwsAAPRUYmKinnzySVksFo0ePVrbtm3Tk08+qSuvvFLvvPOOHA6H0tLSJEl2u13nn39+n9fkc2BZunSp5syZo7y8PEnSihUr9Pbbb+v5559XQUFBp/FDhw71er1mzRqFh4d7BZbf/OY3uuaaa/S73/3O03f22Wf7WhoAAEYKDw/XgQMH/Pbevrrsssu8LiNlZmbq97//vT777DMFBwcrNTXVs23MmDEaPHhwb5R6XD4Flvb2dlVVVamwsNDTFxQUpOzsbFVWVnZrDbvdrtzcXEVEREiSXC6X3n77bf3qV79STk6OPv74Y40aNUqFhYWaMmVKl+u0tbWpra3N89rpdPqyKwAA9BuLxeL53EPP+HQPy549e9TR0aHY2Fiv/tjYWDU0NJxwvsPhUE1NjWbPnu3pa2pq0oEDB/Too49q0qRJ2rRpk2644Qb99Kc/1ebNm7tcq7i4WDabzdMSExN92RUAANCFLVu2eL3+6KOPdO6552rMmDH6/vvvVVVV5dlWW1urffv29XlN/fq1ZrvdruTkZKWnp3v6XC6XJOn666/XXXfdpZSUFBUUFOgnP/mJVqxY0eVahYWFamlp8bT6+vo+rx8AgNNBXV2d8vPzVVtbq1deeUXPPPOMFi1apNGjR2vSpEm64447tGXLFlVVVWn27NmeX2TuSz4FlujoaFmtVjU2Nnr1NzY2Ki4u7rhzW1tbtWbNGs2aNavTmsHBwbrgggu8+s8///zjfksoNDRUkZGRXg0AAJy8GTNm6NChQ0pPT9f8+fO1aNEizZ07V5K0atUqxcfH68orr9RPf/pTzZ0795hfuultPt3DEhISotTUVJWXl3vuL3G5XCovL9eCBQuOO3fdunVqa2vT9OnTO62Zlpam2tpar/4vvvhCI0eO9KU8AADQCwYMGKCSkhItX76807a4uDi99dZbXn233XZbn9fk87eE8vPzNXPmTI0bN07p6ekqKSlRa2ur51tDM2bMUEJCgoqLi73m2e12TZkyRVFRUZ3WvOeeezRt2jT96Ec/0oQJE7Rx40a9+eab+uCDD3q2VwAAIKD4HFimTZum5uZmFRUVqaGhQSkpKdq4caPnRty6ujoFBXlfaaqtrVVFRYU2bdp0zDVvuOEGrVixQsXFxbrzzjs1evRovfbaa7riiit6sEsAACDQWNxut9vfRfQGp9Mpm82mlpYW7mcBAPjV4cOH9fXXX2vUqFE8BFXHPx7d/fzmxw8BAOgjAXJO4KT1xnEgsAAA0MsGDBggSX77wUPTHD0OR49LT/BrzQAA9DKr1arBgwd7fhTQ119MDhRHf6W6qalJgwcPltVq7fFaBBYAAPrA0eeT9ccvGZtu8ODBJ3xe24kQWAAA6AMWi0XDhw9XTEyMjhw54u9y/GbAgAEndWblKAILAAB9yGq19soH9umOm24BAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIzXo8BSWlqqpKQkhYWFKSMjQw6Ho8uxWVlZslgsndrkyZM9Y26//fZO2ydNmtST0gAAQAAK9nXC2rVrlZ+frxUrVigjI0MlJSXKyclRbW2tYmJiOo1fv3692tvbPa/37t2rsWPHaurUqV7jJk2apFWrVnleh4aG+loaAAAIUD4HlqVLl2rOnDnKy8uTJK1YsUJvv/22nn/+eRUUFHQaP3ToUK/Xa9asUXh4eKfAEhoaqri4uG7X0dbWpra2Ns9rp9Ppy24AAIBTiE+XhNrb21VVVaXs7OwfFggKUnZ2tiorK7u1ht1uV25uriIiIrz6P/jgA8XExGj06NGaN2+e9u7de9x1iouLZbPZPC0xMdGXXQEAAKcQnwLLnj171NHRodjYWK/+2NhYNTQ0nHC+w+FQTU2NZs+e7dU/adIk/fu//7vKy8v12GOPafPmzbr66qvV0dHR5VqFhYVqaWnxtPr6el92BQAAnEJ8viR0Mux2u5KTk5Wenu7Vn5ub6/k7OTlZF198sc4++2x98MEHuuqqq465VmhoKPe5AABwmvDpDEt0dLSsVqsaGxu9+hsbG094/0lra6vWrFmjWbNmnfB9zjrrLEVHR+vLL7/0pTwAABCgfAosISEhSk1NVXl5uafP5XKpvLxcmZmZx527bt06tbW1afr06Sd8n3/+85/au3evhg8f7kt5AAAgQPn8HJb8/Hw9++yzWr16tT777DPNmzdPra2tnm8NzZgxQ4WFhZ3m2e12TZkyRVFRUV79Bw4c0D333KOPPvpIO3bsUHl5ua6//nqdc845ysnJ6eFuAQCAQOLzPSzTpk1Tc3OzioqK1NDQoJSUFG3cuNFzI25dXZ2CgrxzUG1trSoqKrRp06ZO61mtVn366adavXq19u3bp/j4eE2cOFEPPvgg96gAAABJksXtdrv9XURvcDqdstlsamlpUWRkpL/LAQAA3dDdz29+SwgAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxutRYCktLVVSUpLCwsKUkZEhh8PR5disrCxZLJZObfLkyccc//Of/1wWi0UlJSU9KQ0AAAQgnwPL2rVrlZ+fryVLlqi6ulpjx45VTk6Ompqajjl+/fr12r17t6fV1NTIarVq6tSpnca+/vrr+uijjxQfH+/7ngAAgIDlc2BZunSp5syZo7y8PF1wwQVasWKFwsPD9fzzzx9z/NChQxUXF+dp7733nsLDwzsFlp07d2rhwoUqKyvTgAEDTlhHW1ubnE6nVwMAAIHJp8DS3t6uqqoqZWdn/7BAUJCys7NVWVnZrTXsdrtyc3MVERHh6XO5XLrtttt0zz336MILL+zWOsXFxbLZbJ6WmJjoy64AAIBTiE+BZc+ePero6FBsbKxXf2xsrBoaGk443+FwqKamRrNnz/bqf+yxxxQcHKw777yz27UUFhaqpaXF0+rr67s9FwAAnFqC+/PN7Ha7kpOTlZ6e7umrqqrSU089perqalkslm6vFRoaqtDQ0L4oEwAAGManMyzR0dGyWq1qbGz06m9sbFRcXNxx57a2tmrNmjWaNWuWV/+HH36opqYmjRgxQsHBwQoODtY333yju+++W0lJSb6UBwAAApRPgSUkJESpqakqLy/39LlcLpWXlyszM/O4c9etW6e2tjZNnz7dq/+2227Tp59+qk8++cTT4uPjdc899+jdd9/1pTwAABCgfL4klJ+fr5kzZ2rcuHFKT09XSUmJWltblZeXJ0maMWOGEhISVFxc7DXPbrdrypQpioqK8uqPiorq1DdgwADFxcVp9OjRvpYHAAACkM+BZdq0aWpublZRUZEaGhqUkpKijRs3em7EraurU1CQ94mb2tpaVVRUaNOmTb1TNQAAOK1Y3G63299F9Aan0ymbzaaWlhZFRkb6uxwAANAN3f385reEAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGC8HgWW0tJSJSUlKSwsTBkZGXI4HF2OzcrKksVi6dQmT57sGfPb3/5WY8aMUUREhIYMGaLs7Gxt2bKlJ6UBAIAA5HNgWbt2rfLz87VkyRJVV1dr7NixysnJUVNT0zHHr1+/Xrt37/a0mpoaWa1WTZ061TPmvPPO07Jly7Rt2zZVVFQoKSlJEydOVHNzc8/3DAAABAyL2+12+zIhIyNDaWlpWrZsmSTJ5XIpMTFRCxcuVEFBwQnnl5SUqKioSLt371ZERMQxxzidTtlsNr3//vu66qqrulXX0TktLS2KjIzs/g4BAAC/6e7nt09nWNrb21VVVaXs7OwfFggKUnZ2tiorK7u1ht1uV25ubpdhpb29XStXrpTNZtPYsWO7XKetrU1Op9OrAQCAwORTYNmzZ486OjoUGxvr1R8bG6uGhoYTznc4HKqpqdHs2bM7bXvrrbd0xhlnKCwsTE8++aTee+89RUdHd7lWcXGxbDabpyUmJvqyKwAA4BTSr98SstvtSk5OVnp6eqdtEyZM0CeffKL//u//1qRJk3TzzTd3eV+MJBUWFqqlpcXT6uvr+7J0AADgRz4FlujoaFmtVjU2Nnr1NzY2Ki4u7rhzW1tbtWbNGs2aNeuY2yMiInTOOefosssuk91uV3BwsOx2e5frhYaGKjIy0qsBAIDA5FNgCQkJUWpqqsrLyz19LpdL5eXlyszMPO7cdevWqa2tTdOnT+/We7lcLrW1tflSHgAACFDBvk7Iz8/XzJkzNW7cOKWnp6ukpEStra3Ky8uTJM2YMUMJCQkqLi72mme32zVlyhRFRUV59be2turhhx/Wddddp+HDh2vPnj0qLS3Vzp07vb76DAAATl8+B5Zp06apublZRUVFamhoUEpKijZu3Oi5Ebeurk5BQd4nbmpra1VRUaFNmzZ1Ws9qterzzz/X6tWrtWfPHkVFRSktLU0ffvihLrzwwh7uFgAACCQ+P4fFVDyHBQCAU0+fPIcFAADAHwgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYL9ncBJnO73Tp48KC/ywAAwAjh4eGyWCx+eW8Cy3EcPHhQZ5xxhr/LAADACAcOHFBERIRf3ptLQgAAwHicYTmO8PBwHThwwN9lAABghPDwcL+9N4HlOCwWi99OfQEAgB9wSQgAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwXo8CS2lpqZKSkhQWFqaMjAw5HI4ux2ZlZclisXRqkydPliQdOXJE9957r5KTkxUREaH4+HjNmDFDu3bt6tkeAQCAgONzYFm7dq3y8/O1ZMkSVVdXa+zYscrJyVFTU9Mxx69fv167d+/2tJqaGlmtVk2dOlWSdPDgQVVXV+u+++5TdXW11q9fr9raWl133XUnt2cAACBgWNxut9uXCRkZGUpLS9OyZcskSS6XS4mJiVq4cKEKCgpOOL+kpERFRUXavXu3IiIijjlm69atSk9P1zfffKMRI0Ycc0xbW5va2to8r51OpxITE9XS0qLIyEhfdgkAAPiJ0+mUzWY74ee3T2dY2tvbVVVVpezs7B8WCApSdna2Kisru7WG3W5Xbm5ul2FFklpaWmSxWDR48OAuxxQXF8tms3laYmJit/cDAACcWnwKLHv27FFHR4diY2O9+mNjY9XQ0HDC+Q6HQzU1NZo9e3aXYw4fPqx7771Xt9xyy3GTVmFhoVpaWjytvr6++zsCAABOKcH9+WZ2u13JyclKT08/5vYjR47o5ptvltvt1vLly4+7VmhoqEJDQ/uiTAAAYBifzrBER0fLarWqsbHRq7+xsVFxcXHHndva2qo1a9Zo1qxZx9x+NKx88803eu+997gPBQAAePgUWEJCQpSamqry8nJPn8vlUnl5uTIzM487d926dWpra9P06dM7bTsaVrZv3673339fUVFRvpQFAAACnM+XhPLz8zVz5kyNGzdO6enpKikpUWtrq/Ly8iRJM2bMUEJCgoqLi73m2e12TZkypVMYOXLkiG666SZVV1frrbfeUkdHh+d+mKFDhyokJKSn+wYAAAKEz4Fl2rRpam5uVlFRkRoaGpSSkqKNGzd6bsStq6tTUJD3iZva2lpVVFRo06ZNndbbuXOn3njjDUlSSkqK17Y///nPysrK8rVEAAAQYHx+Doupuvs9bgAAYI4+eQ4LAACAPxBYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4PQospaWlSkpKUlhYmDIyMuRwOLocm5WVJYvF0qlNnjzZM2b9+vWaOHGioqKiZLFY9Mknn/SkLAAAEKB8Dixr165Vfn6+lixZourqao0dO1Y5OTlqamo65vj169dr9+7dnlZTUyOr1aqpU6d6xrS2tuqKK67QY4891vM9AQAAAcvidrvdvkzIyMhQWlqali1bJklyuVxKTEzUwoULVVBQcML5JSUlKioq0u7duxUREeG1bceOHRo1apQ+/vhjpaSk+FKWnE6nbDabWlpaFBkZ6dNcAADgH939/PbpDEt7e7uqqqqUnZ39wwJBQcrOzlZlZWW31rDb7crNze0UVnzV1tYmp9Pp1QAAQGDyKbDs2bNHHR0dio2N9eqPjY1VQ0PDCec7HA7V1NRo9uzZvlV5DMXFxbLZbJ6WmJh40msCAAAz9eu3hOx2u5KTk5Wenn7SaxUWFqqlpcXT6uvre6FCAABgomBfBkdHR8tqtaqxsdGrv7GxUXFxcced29raqjVr1uiBBx7wvcpjCA0NVWhoaK+sBQAAzObTGZaQkBClpqaqvLzc0+dyuVReXq7MzMzjzl23bp3a2to0ffr0nlUKAABOWz6dYZGk/Px8zZw5U+PGjVN6erpKSkrU2tqqvLw8SdKMGTOUkJCg4uJir3l2u11TpkxRVFRUpzW//fZb1dXVadeuXZKk2tpaSVJcXNwJz9wAAIDA53NgmTZtmpqbm1VUVKSGhgalpKRo48aNnhtx6+rqFBTkfeKmtrZWFRUV2rRp0zHXfOONNzyBR5Jyc3MlSUuWLNFvf/tbX0sEAAABxufnsJiK57AAAHDq6ZPnsAAAAPgDgQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjNejwFJaWqqkpCSFhYUpIyNDDoejy7FZWVmyWCyd2uTJkz1j3G63ioqKNHz4cA0cOFDZ2dnavn17T0oDAAAByOfAsnbtWuXn52vJkiWqrq7W2LFjlZOTo6ampmOOX79+vXbv3u1pNTU1slqtmjp1qmfM7373Oz399NNasWKFtmzZooiICOXk5Ojw4cM93zMAABAwLG632+3LhIyMDKWlpWnZsmWSJJfLpcTERC1cuFAFBQUnnF9SUqKioiLt3r1bERERcrvdio+P1913361f/vKXkqSWlhbFxsbqhRdeUG5ubrfqcjqdstlsamlpUWRkpC+7BAAA/KS7n98+nWFpb29XVVWVsrOzf1ggKEjZ2dmqrKzs1hp2u125ubmKiIiQJH399ddqaGjwWtNmsykjI+O4a7a1tcnpdHo1AAAQmHwKLHv27FFHR4diY2O9+mNjY9XQ0HDC+Q6HQzU1NZo9e7an7+g8X9csLi6WzWbztMTERF92BQAAnEL69VtCdrtdycnJSk9PP+m1CgsL1dLS4mn19fW9UCEAADCRT4ElOjpaVqtVjY2NXv2NjY2Ki4s77tzW1latWbNGs2bN8uo/Os/XNUNDQxUZGenVAABAYPIpsISEhCg1NVXl5eWePpfLpfLycmVmZh537rp169TW1qbp06d79Y8aNUpxcXFeazqdTm3ZsuWEawIAgNNDsK8T8vPzNXPmTI0bN07p6ekqKSlRa2ur8vLyJEkzZsxQQkKCiouLvebZ7XZNmTJFUVFRXv0Wi0WLFy/WQw89pHPPPVejRo3Sfffdp/j4eE2ZMqXnewYAAAKGz4Fl2rRpam5uVlFRkRoaGpSSkqKNGzd6bpqtq6tTUJD3iZva2lpVVFRo06ZNx1zzV7/6lVpbWzV37lzt27dPV1xxhTZu3KiwsLAe7BIAAAg0Pj+HxVQ8hwUAgFNPnzyHBQAAwB8ILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwXo8CS2lpqZKSkhQWFqaMjAw5HI7jjt+3b5/mz5+v4cOHKzQ0VOedd542bNjg2b5//34tXrxYI0eO1MCBA3X55Zdr69atPSkNAAAEIJ8Dy9q1a5Wfn68lS5aourpaY8eOVU5Ojpqamo45vr29Xf/6r/+qHTt26NVXX1Vtba2effZZJSQkeMbMnj1b7733nl588UVt27ZNEydOVHZ2tnbu3NnzPQMAAAHD4na73b5MyMjIUFpampYtWyZJcrlcSkxM1MKFC1VQUNBp/IoVK/T444/r888/14ABAzptP3TokAYNGqQ//elPmjx5sqc/NTVVV199tR566KFj1tHW1qa2tjbPa6fTqcTERLW0tCgyMtKXXQIAAH7idDpls9lO+Pnt0xmW9vZ2VVVVKTs7+4cFgoKUnZ2tysrKY8554403lJmZqfnz5ys2NlYXXXSRHnnkEXV0dEiSvv/+e3V0dCgsLMxr3sCBA1VRUdFlLcXFxbLZbJ6WmJjoy64AAIBTiE+BZc+ePero6FBsbKxXf2xsrBoaGo4556uvvtKrr76qjo4ObdiwQffdd59+//vfe86cDBo0SJmZmXrwwQe1a9cudXR06KWXXlJlZaV2797dZS2FhYVqaWnxtPr6el92BQAAnEKC+/oNXC6XYmJitHLlSlmtVqWmpmrnzp16/PHHtWTJEknSiy++qJ/97GdKSEiQ1WrVpZdeqltuuUVVVVVdrhsaGqrQ0NC+Lh8AABjApzMs0dHRslqtamxs9OpvbGxUXFzcMecMHz5c5513nqxWq6fv/PPPV0NDg9rb2yVJZ599tjZv3qwDBw6ovr5eDodDR44c0VlnneXr/gAAgADkU2AJCQlRamqqysvLPX0ul0vl5eXKzMw85pzx48fryy+/lMvl8vR98cUXGj58uEJCQrzGRkREaPjw4fruu+/07rvv6vrrr/elPAAAEKB8/lpzfn6+nn32Wa1evVqfffaZ5s2bp9bWVuXl5UmSZsyYocLCQs/4efPm6dtvv9WiRYv0xRdf6O2339Yjjzyi+fPne8a8++672rhxo77++mu99957mjBhgsaMGeNZEwAAnN58vodl2rRpam5uVlFRkRoaGpSSkqKNGzd6bsStq6tTUNAPOSgxMVHvvvuu7rrrLl188cVKSEjQokWLdO+993rGtLS0qLCwUP/85z81dOhQ3XjjjXr44YeP+TVoAABw+vH5OSym6u73uAEAgDn65DksAAAA/kBgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADBesL8L6C1ut1uS5HQ6/VwJAADorqOf20c/x7sSMIFl//79kqTExEQ/VwIAAHy1f/9+2Wy2Lrdb3CeKNKcIl8ulXbt2adCgQbJYLL22rtPpVGJiourr6xUZGdlr68Ibx7n/cKz7B8e5f3Cc+0dfHme32639+/crPj5eQUFd36kSMGdYgoKCdOaZZ/bZ+pGRkfyPoR9wnPsPx7p/cJz7B8e5f/TVcT7emZWjuOkWAAAYj8ACAACMR2A5gdDQUC1ZskShoaH+LiWgcZz7D8e6f3Cc+wfHuX+YcJwD5qZbAAAQuDjDAgAAjEdgAQAAxiOwAAAA4xFYAACA8Qgs3bRjxw7NmjVLo0aN0sCBA3X22WdryZIlam9v93dpAaG0tFRJSUkKCwtTRkaGHA6Hv0sKKMXFxUpLS9OgQYMUExOjKVOmqLa21t9lBbxHH31UFotFixcv9ncpAWfnzp2aPn26oqKiNHDgQCUnJ+tvf/ubv8sKOB0dHbrvvvu8PvsefPDBE/7uT18ImCfd9rXPP/9cLpdLf/zjH3XOOeeopqZGc+bMUWtrq5544gl/l3dKW7t2rfLz87VixQplZGSopKREOTk5qq2tVUxMjL/LCwibN2/W/PnzlZaWpu+//16//vWvNXHiRP39739XRESEv8sLSFu3btUf//hHXXzxxf4uJeB89913Gj9+vCZMmKB33nlHw4YN0/bt2zVkyBB/lxZwHnvsMS1fvlyrV6/WhRdeqL/97W/Ky8uTzWbTnXfe2a+18LXmk/D4449r+fLl+uqrr/xdyiktIyNDaWlpWrZsmaT/+12oxMRELVy4UAUFBX6uLjA1NzcrJiZGmzdv1o9+9CN/lxNwDhw4oEsvvVR/+MMf9NBDDyklJUUlJSX+LitgFBQU6K9//as+/PBDf5cS8H7yk58oNjZWdrvd03fjjTdq4MCBeumll/q1Fi4JnYSWlhYNHTrU32Wc0trb21VVVaXs7GxPX1BQkLKzs1VZWenHygJbS0uLJPHvt4/Mnz9fkydP9vp3jd7zxhtvaNy4cZo6dapiYmJ0ySWX6Nlnn/V3WQHp8ssvV3l5ub744gtJ0v/8z/+ooqJCV199db/XwiWhHvryyy/1zDPPcDnoJO3Zs0cdHR2KjY316o+NjdXnn3/up6oCm8vl0uLFizV+/HhddNFF/i4n4KxZs0bV1dXaunWrv0sJWF999ZWWL1+u/Px8/frXv9bWrVt15513KiQkRDNnzvR3eQGloKBATqdTY8aMkdVqVUdHhx5++GHdeuut/V7LaX+GpaCgQBaL5bjt///g3LlzpyZNmqSpU6dqzpw5fqoc6Jn58+erpqZGa9as8XcpAae+vl6LFi1SWVmZwsLC/F1OwHK5XLr00kv1yCOP6JJLLtHcuXM1Z84crVixwt+lBZz/+I//UFlZmV5++WVVV1dr9erVeuKJJ7R69ep+r+W0P8Ny99136/bbbz/umLPOOsvz965duzRhwgRdfvnlWrlyZR9XF/iio6NltVrV2Njo1d/Y2Ki4uDg/VRW4FixYoLfeekt/+ctfdOaZZ/q7nIBTVVWlpqYmXXrppZ6+jo4O/eUvf9GyZcvU1tYmq9XqxwoDw/Dhw3XBBRd49Z1//vl67bXX/FRR4LrnnntUUFCg3NxcSVJycrK++eYbFRcX9/vZrNM+sAwbNkzDhg3r1tidO3dqwoQJSk1N1apVqxQUdNqfoDppISEhSk1NVXl5uaZMmSLp//7fU3l5uRYsWODf4gKI2+3WwoUL9frrr+uDDz7QqFGj/F1SQLrqqqu0bds2r768vDyNGTNG9957L2Gll4wfP77T1/K/+OILjRw50k8VBa6DBw92+qyzWq1yuVz9XstpH1i6a+fOncrKytLIkSP1xBNPqLm52bONMwEnJz8/XzNnztS4ceOUnp6ukpIStba2Ki8vz9+lBYz58+fr5Zdf1p/+9CcNGjRIDQ0NkiSbzaaBAwf6ubrAMWjQoE73BUVERCgqKor7hXrRXXfdpcsvv1yPPPKIbr75ZjkcDq1cuZKz3n3g2muv1cMPP6wRI0bowgsv1Mcff6ylS5fqZz/7Wf8X40a3rFq1yi3pmA0n75lnnnGPGDHCHRIS4k5PT3d/9NFH/i4poHT1b3fVqlX+Li3gXXnlle5Fixb5u4yA8+abb7ovuugid2hoqHvMmDHulStX+rukgOR0Ot2LFi1yjxgxwh0WFuY+66yz3L/5zW/cbW1t/V4Lz2EBAADG4yYMAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAfpWVlaXFixd3uT0pKUklJSX9Vg8AM/FbQgCMtnXrVkVERPi7DAB+RmABYLTu/po6gMDGJSEAfvf9999rwYIFstlsio6O1n333aejP3P2/18Sslgseu6553TDDTcoPDxc5557rt544w0/VQ6gvxBYAPjd6tWrFRwcLIfDoaeeekpLly7Vc8891+X4+++/XzfffLM+/fRTXXPNNbr11lv17bff9mPFAPobgQWA3yUmJurJJ5/U6NGjdeutt2rhwoV68sknuxx/++2365ZbbtE555yjRx55RAcOHJDD4ejHigH0NwILAL+77LLLZLFYPK8zMzO1fft2dXR0HHP8xRdf7Pk7IiJCkZGRampq6vM6AfgPgQXAKWfAgAFery0Wi1wul5+qAdAfCCwA/G7Lli1erz/66COde+65slqtfqoIgGkILAD8rq6uTvn5+aqtrdUrr7yiZ555RosWLfJ3WQAMwnNYAPjdjBkzdOjQIaWnp8tqtWrRokWaO3euv8sCYBCL++jDDgAAAAzFJSEAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGO//ATjXMUhtHAojAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHGCAYAAABXQNCQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEqElEQVR4nO3deXhU5cH+8XsyWYkkLCGrCYHKKqtAIlIL+sbSqlR8LYIFoYiAGCAYihAtUBeIC4WwSYCiRYuyCFooiNjUDV8kCNVKhURkSQSSsCYQIAmZ8/vDX6amBMhkO7N8P9c119WcOedwz7y85PZ5znOOxTAMQwAAAE7My+wAAAAA10NhAQAATo/CAgAAnB6FBQAAOD0KCwAAcHoUFgAA4PQoLAAAwOlRWAAAgNOjsAAAAKdHYQEAAE6PwgKgzvz5z3+WxWKxv/z9/dW2bVuNHz9e+fn5lfbdsmWLLBaLIiMjZbPZ7NtfeOEFWSwWvf/++1X+GXfffbeCg4N17NixGmW86667ZLFYNH78+BodD8AcFBYAde7ZZ5/VG2+8oUWLFum2227TkiVL1Lt3b124cMG+z6pVqxQbG6vjx4/rH//4h3375MmT1blzZz3++OO6ePFipfOuW7dO7733nlJTUxUZGelwrg0bNmjHjh01/2AATENhAVDnfvnLX2rYsGF69NFH9ec//1mTJk3SoUOH9Ne//lWSVFxcrL/+9a9KTk5W9+7dtWrVKvuxPj4+WrZsmQ4fPqznnnvOvv3cuXOaNGmSbr31Vj322GMOZ7p06ZImT56sqVOn1v4DAmhwFBYA9e7OO++UJB06dEiS9M477+jixYsaNGiQhgwZog0bNujSpUv2/StKyZw5c/TNN99Ikn7/+9+roKBAy5Ytk5eX4/90vfTSS7LZbPrd735XB58IQEOjsACod999950kqXnz5pJ+mA664447FB4eriFDhujcuXPatGlTpWNSU1PVokULjR07Vrt379bixYv1u9/9Tp07d3b4z8/JydELL7ygF198UQEBAbX/QAAaHIUFQJ0rLCzUyZMn9f3332vNmjV69tlnFRAQoHvvvVcFBQX6+9//riFDhkiSYmJi1Lt370rTQpIUFBSkBQsWaPv27fr5z3+uli1basaMGTXKM3nyZHXv3t3+ZwJwPd5mBwDgfhISEir93LJlS61atUpRUVFasGCBvLy89MADD9jff+ihhzR58mSdOXNGTZs2tW9/4IEHdPfdd2vLli1atWpVjUZHPvzwQ61fv147d+6s+QcCYDoKC4A6t3jxYrVt21be3t4KCwtTu3bt7Ned/OUvf1FcXJxOnTqlU6dOSZK6d++u0tJSrVu3TmPGjKl0rl69emnLli3q2bOnwzkuX76siRMn6uGHH1avXr1q/8EAmIbCAqDOxcXFVVkwvv32W+3atUuS1KZNmyveX7Vq1RWFpTZef/11ZWVlaenSpTp8+HCl986dO6fDhw8rNDRUjRo1qrM/E0D9oLAAaDCrVq2Sj4+P3njjDVmt1krvbd++XQsWLFBOTo5iYmLq5M/LyclRWVmZ+vTpc8V7r7/+ul5//XW98847GjhwYJ38eQDqD4UFQINZtWqVbr/9dg0ePPiK93r37q0FCxborbfeqrN7pQwZMkTdunW7Yvv999+vu+++W6NHj1Z8fHyd/FkA6heFBUCD2Llzpw4cOHDVW+JHRUXplltu0apVq+qssLRv317t27ev8r1WrVoxsgK4EJY1A2gQFcuWBwwYcNV9BgwYoK+//lr/+te/GioWABdhMQzDMDsEAADAtTDCAgAAnB7XsABwSadPn1ZpaelV37darWrRokUDJgJQn5gSAuCS+vXrp48//viq77ds2fKKe68AcF0UFgAuaffu3Tpz5sxV3w8ICKjy/isAXBOFBQAAOD23uYbFZrPp2LFjaty4sSwWi9lxAABANRiGoXPnzikyMtL+zLGquE1hOXbsmKKjo82OAQAAaiA3N1c33njjVd93m8LSuHFjST984KCgIJPTAACA6igqKlJ0dLT99/jVuE1hqZgGCgoKorAAAOBirnc5BzeOAwAATo/CAgAAnB6FBQAAOD23uYYFAABnVF5errKyMrNjmMbHx0dWq7XW56GwAABQDwzDUF5ens6ePWt2FNM1adJE4eHhtbpPGoUFAIB6UFFWQkND1ahRI4+8qalhGLpw4YIKCgokSRERETU+F4UFAIA6Vl5ebi8rzZs3NzuOqQICAiRJBQUFCg0NrfH0EBfdAgBQxyquWWnUqJHJSZxDxfdQm2t5KCwAANQTT5wGqkpdfA8UFgAA4PQoLAAAwOlRWAAAQK3ExsYqLS2tXv8MVgkBHubkyZMqLi42O4bb8/b2VmRkJNcwAHWEwgJ4kBdeeEFPP/20bDab2VE8wpQpU/TSSy+ZHQNwCzUqLIsXL9bLL7+svLw8de3aVQsXLlRcXFyV+/br108ff/zxFdvvvvtubd682f7zvn37NHXqVH388ce6fPmyOnbsqPXr1ysmJqYmEQH8l3Xr1iklJUWS5O/vb3Ia92az2VRaWqpt27ZRWCDpPzdQM4OjN63r16+fOnXqJEl644035OPjo3HjxunZZ5+VxWJRQUGBRo0apb///e8KDw/X888/X1/RK3G4sKxZs0bJyclKT09XfHy80tLS1L9/f2VlZSk0NPSK/Tds2KDS0lL7z6dOnVLXrl01aNAg+7bvvvtOP/3pTzVq1Cg988wzCgoK0r///W/+UQXqyO7duzVixAhJUnJysv74xz+anMi9ZWVlqX379vruu+9kGAbTQtCFCxd0ww03mPJnnz9/XoGBgQ4ds3LlSo0aNUqZmZn64osvNGbMGMXExGj06NH67W9/q2PHjunDDz+Uj4+PJk6caL+Tbb0yHBQXF2ckJibafy4vLzciIyON1NTUah0/b948o3Hjxsb58+ft2wYPHmwMGzbMoRyXLl0yCgsL7a/c3FxDklFYWOjQeQB3d/ToUSMyMtKQZNx9993G5cuXzY7k9i5evGhYLBZDklFQUGB2HJjg4sWLxjfffGNcvHjRMAzDOH/+vCHJlNePf99WR9++fY0OHToYNpvNvm3q1KlGhw4djKysLEOSkZmZaX9v3759hiRj3rx51f4+fqywsLBav78dWiVUWlqq3bt3KyEhwb7Ny8tLCQkJ2rFjR7XOsWLFCg0ZMsTe9mw2mzZv3qy2bduqf//+Cg0NVXx8vN59991rnic1NVXBwcH2V3R0tCMfBfAIFy9e1MCBA3Xs2DF17NhRb731Vp08NRXX5u/vr6ioKEnSwYMHTU4DZ9CoUSOdP3/elFdN7rZ76623VhoZ7N27t7799lvt27dP3t7e6tGjh/299u3bq0mTJnXxNV2TQ4Xl5MmTKi8vV1hYWKXtYWFhysvLu+7xmZmZ2rt3rx599FH7toKCAp0/f14vvPCCfvGLX2jbtm26//779b//+79VXvtSISUlRYWFhfZXbm6uIx8FcHuGYeiRRx7Rrl271KxZM23cuFFBQUFmx/IYP/nJTyT9MOUNWCwWBQYGmvJylynJBl0ltGLFCnXu3LnSBboVqxXuu+8+PfHEE5Kkbt266f/+7/+Unp6uvn37VnkuPz8/+fn51X9owEXNmjVLq1evlre3t9avX2//BYqG0bp1a3388ceMsMAl7dy5s9LPn3/+udq0aaP27dvr8uXL2r17t3r16iXph2u2zp49W++ZHBphCQkJkdVqVX5+fqXt+fn5Cg8Pv+axxcXFWr16tUaNGnXFOb29vdWxY8dK2zt06KCcnBxH4gH4/9avX6/p06dLkl555RX169fP3EAeqHXr1pKYEoJrysnJUXJysrKysvTWW29p4cKFSkpKUrt27fSLX/xCY8eO1c6dO7V79249+uij9icy1yeHCouvr6969OihjIwM+zabzaaMjAz17t37mseuW7dOJSUlGjZs2BXn7NWrl7Kysiptz87OVsuWLR2JB0DSP//5Tw0fPlySlJSUpNGjR5ucyDMxJQRXNnz4cF28eFFxcXFKTExUUlKSxowZI0l67bXXFBkZqb59++p///d/NWbMmCpXCdc1h6eEkpOTNWLECPXs2VNxcXFKS0tTcXGxRo4cKemHDxkVFaXU1NRKx61YsUIDBw5U8+bNrzjnlClTNHjwYP3sZz/THXfcoa1bt2rTpk366KOPavapAA91/Phx/epXv9KFCxfUv39/zZkzx+xIHosRFrgyHx8fpaWlacmSJVe8Fx4err/97W+Vtj388MP1nsnhwjJ48GCdOHFCM2bMUF5enrp166atW7faL8TNycmRl1flgZusrCxt375d27Ztq/Kc999/v9LT05WamqqJEyeqXbt2Wr9+vX7605/W4CMBnunSpUu6//779f3336t9+/Zas2aNvL25mbVZKkZYjh49qkuXLnFfKaCWavSv2fjx4zV+/Pgq36tqVKRdu3YyDOOa53zkkUf0yCOP1CQO4PEMw9Cjjz6qnTt3qmnTptq4caOCg4PNjuXRmjdvrsaNG+vcuXM6fPiw2rdvb3YkwKXxn1+AG3jhhRe0atUqeXt76+2331abNm3MjuTxLBaLWrdura+++koHDx6ksMBlOOvlGA5ddAvA+bz77rt66qmnJEkLFy7UnXfeaXIiVODCW1xvdsFT1MX3QGEBXNhXX31lX3k3fvx4PfbYYyYnwo9x4a3n8vHxkSTTHnjobCq+h4rvpSaYEgJcVH5+vgYMGKDi4mIlJCRo3rx5ZkfCf6GweC6r1aomTZrYHwro6BOT3YXx/59SXVBQoCZNmtTq0SAUFsAFVawIys3NVdu2bbV27VpWBDkhpoQ8W8UNVRvkScZOrkmTJte9wez18C8c4GIMw9DYsWO1Y8cONWnSRJs2bVLTpk3NjoUq/HiExTAMj/wvbE9msVgUERGh0NBQlZWVmR3HND4+PnXy0FUKC+BiXn75Zb3++uuyWq1at26d2rZta3YkXEVMTIy8vLx08eLFaj3CBO7JarXylPQ6wEW3gAvZuHGjpk2bJkmaP3++EhISTE6Ea/H19VVMTIwkpoWA2qKwAC7i66+/1tChQ2UYhsaNG6fExESzI6EauPAWqBsUFsAFFBQUaMCAATp//rzuvPNOzZ8/3+xIqCYKC1A3KCyAkyspKdEDDzygI0eO6KabbtK6detqdS8DNCxWCgF1g8ICOLGK6Z/t27crODhYmzZtUrNmzcyOBQcwwgLUDQoL4MTmzp2r1157TV5eXlq7di3Po3FBFBagblBYACe1efNmTZkyRZI0b948/fznPzc5EWqiYkro+PHj3KYdqAUKC+CE/v3vf+uhhx6SYRgaM2aMJkyYYHYk1FDTpk3VpEkTSdKhQ4fMDQO4MAoL4GROnjypAQMG6Ny5c+rbt68WLlzIHVJdHBfeArVHYQGcSGlpqR544AEdOnRIrVu31vr16+Xr62t2LNQS17EAtUdhAZyEYRhKTEzUJ598oqCgIG3atEnNmzc3OxbqAIUFqD0KC+Ak5s+frz/96U/y8vLS6tWr1bFjR7MjoY4wJQTUHoUFcALvvfeeJk+eLEmaM2eOfvnLX5qcCHWJERag9igsgMn27dunIUOGyGazadSoUZo0aZLZkVDHKgrLoUOHZLPZTE4DuCYKC2CiU6dOacCAASoqKtLtt9+uV155hRVBbig6Olre3t4qKSnRsWPHzI4DuCQKC2CSsrIy/frXv9Z3332n2NhYVgS5MW9vb7Vs2VIS00JATVFYABMYhqEJEyboo48+0g033KBNmzapRYsWZsdCPeI6FqB2KCyACRYtWqSlS5fKYrHorbfeUqdOncyOhHrGSiGgdigsQAPbtm2b/cLal156Sffee6+5gdAgGGEBaofCAjSg/fv368EHH5TNZtOIESPsS5nh/igsQO1QWIAGcvr0aQ0YMECFhYXq06ePfUoInoEpIaB2KCxAAygrK9ODDz6oAwcOqGXLltqwYYP8/PzMjoUGVDHCcuLECZ07d87kNIDrobAADWDSpEnKyMhQYGCgNm7cqNDQULMjoYEFBQUpJCREEtNCQE1QWIB69sorr9hvCPfmm2+qS5cuZkeCSbiOBag5CgtQj/7+979r4sSJkqTU1FT96le/MjkRzERhAWqOwgLUk+zsbA0aNEjl5eV6+OGH9eSTT5odCSbjwlug5igsQD04c+aMBgwYoLNnz+rWW2/VsmXLWBEERliAWqCwAHXs8uXLGjJkiLKzsxUdHa13331X/v7+ZseCE6CwADVHYQHqWHJysrZt26ZGjRpp48aNCgsLMzsSnETFlNDhw4dVXl5uchrAtVBYgDq0dOlSLVy4UJL0l7/8Rd26dTM3EJxKZGSkfH19VVZWpu+//97sOIBLobAAdeTDDz/U+PHjJUmzZs3S/fffb3IiOBur1arY2FhJTAsBjqKwAHXgwIEDeuCBB3T58mX95je/UUpKitmR4KRYKQTUDIUFqKXCwkL96le/0pkzZxQXF6c//elPrAjCVXHhLVAzFBagFipWBO3bt0833nij3n33XQUEBJgdC06MwgLUDIUFqIUpU6Zo69atCggI0F//+ldFRESYHQlOjikhoGa8zQ4AnDlzRs8++6w2btzoUks9DcNQTk6OJOn111/XLbfcYnIiuAJGWIAaMmpg0aJFRsuWLQ0/Pz8jLi7O2Llz51X37du3ryHpitfdd99d5f5jx441JBnz5s1zKFNhYaEhySgsLHToOJjn8uXLRnp6uhESElLl3xFXeT3//PNmf5VwIefOnbP/3Tlz5ozZcQDTVff3t8MjLGvWrFFycrLS09MVHx+vtLQ09e/fX1lZWQoNDb1i/w0bNqi0tNT+86lTp9S1a1cNGjToin3feecdff7554qMjHQ0FlzMJ598ookTJ+qrr76SJHXo0EGzZs1SVFSUyckc07x5c/sQP1AdN9xwg8LCwpSfn6+DBw8yMgdUk8OFZe7cuRo9erRGjhwpSUpPT9fmzZv16quvatq0aVfs36xZs0o/r169Wo0aNbqisBw9elQTJkzQ+++/r3vuuee6OUpKSlRSUmL/uaioyNGPAhMcOXJETz75pNauXStJCg4O1jPPPKPHH39cPj4+JqcDGkbr1q0pLICDHLrotrS0VLt371ZCQsJ/TuDlpYSEBO3YsaNa51ixYoWGDBmiwMBA+zabzaaHH35YU6ZM0c0331yt86Smpio4ONj+io6OduSjoIFduHBBf/jDH9S+fXutXbtWFotFY8eO1bfffqukpCTKCjwKF94CjnOosJw8eVLl5eVXPBslLCxMeXl51z0+MzNTe/fu1aOPPlpp+4svvihvb29NnDix2llSUlJUWFhof+Xm5lb7WDQcwzC0Zs0atW/fXs8884wuXbqkn/3sZ9qzZ4/S09PVokULsyMCDY4LbwHHNegqoRUrVqhz586Ki4uzb9u9e7fmz5+vPXv2OHSzLT8/P/n5+dVHTNSRf/7zn0pKStKnn34qSYqOjtacOXM0aNAgbqwGj0ZhARzn0AhLSEiIrFar8vPzK23Pz89XeHj4NY8tLi7W6tWrNWrUqErbP/30UxUUFCgmJkbe3t7y9vbWkSNHNHnyZPszN+BaTpw4obFjx6pHjx769NNPFRAQoD/84Q/av3+/HnzwQcoKPB5TQoDjHCosvr6+6tGjhzIyMuzbbDabMjIy1Lt372seu27dOpWUlGjYsGGVtj/88MP617/+pS+//NL+ioyM1JQpU/T+++87Eg8mKysrU1pamtq0aaNly5bJMAwNHjxY+/fv18yZM9WoUSOzIwJOoWKEJScnR2VlZSanAVyDw1NCycnJGjFihHr27Km4uDilpaWpuLjYvmpo+PDhioqKUmpqaqXjVqxYoYEDB6p58+aVtjdv3vyKbT4+PgoPD1e7du0cjQeTbNu2TZMmTdK+ffskSd26ddP8+fP1s5/9zORkgPMJDw+Xv7+/Ll26pNzcXHuBAXB1DheWwYMH68SJE5oxY4by8vLUrVs3bd261X4hbk5Ojry8Kg/cZGVlafv27dq2bVvdpIbTOHDggJKTk7Vp0yZJP0wbzpo1S6NGjZLVajU5HeCcvLy81Lp1a33zzTf67rvvKCxANdTootvx48dr/PjxVb730UcfXbGtXbt2Mgyj2uc/fPhwTWKhAZ07d06zZs3SvHnzVFpaKm9vb40fP14zZsxQ06ZNzY4HOL2KwsKFt0D18CwhOMRms+mNN97QtGnT7EvZf/7znystLU0dOnQwOR3gOlgpBDiGwoJq27lzpyZOnKjMzExJP6x0mDdvnu69915W/gAOYqUQ4BiHVgnBMx0/flwjRozQrbfeqszMTN1www168cUX9e9//1sDBgygrAA1wAgL4BhGWHBVJSUlmjdvnmbNmqXz589Lkn77299q9uzZioiIMDkd4NoqCst3330nwzAo/sB1UFhwBcMwtHHjRk2ePNk+XB0fH68FCxZUuksxgJpr1aqVpB8e3Hr69Okrbu8AoDKmhFDJN998o/79+2vgwIH67rvvFBERoddff13/93//R1kB6lBAQIAiIyMlMS0EVAeFBZKkM2fOKCkpSV26dNEHH3wgX19fpaSkKCsrSw8//PAV99YBUHs/nhYCcG38FvJw5eXlSk9PV5s2bbRgwQKVl5frvvvu0zfffKPZs2ercePGZkcE3FbFSiFGWIDr4xoWD/bxxx8rKSlJX331lSSpY8eOSktL01133WVyMsAzsFIIqD5GWDzQkSNH9OCDD6pfv3766quv1KRJE82fP19ffvklZQVoQNyLBag+Rlg8yIULF/TSSy/pxRdf1KVLl+Tl5aUxY8boueeeU0hIiNnxAI/DCAtQfRQWD2AYhtauXaspU6YoNzdXktS3b1/Nnz9fXbt2NTkd4LkqCktubq5KS0vl6+trciLAeTEl5Ob++c9/qm/fvhoyZIhyc3MVExOjtWvX6sMPP6SsACYLDQ1VYGCgDMPgoa/AdVBY3NSJEyc0duxY9ejRQ59++qkCAgL0zDPPaP/+/Ro0aBB31QScgMViYVoIqCamhNzQ2rVrNWbMGBUWFkqShgwZopdeeknR0dEmJwPw31q3bq2vv/6awgJcB4XFzRw8eFAjRozQpUuX1L17d82fP1+333672bEAXAUrhYDqobC4EcMwlJiYqEuXLumOO+7QBx98IKvVanYsANfAlBBQPVzD4kbWrVunrVu3ytfXV0uWLKGsAC6A2/MD1UNhcROFhYVKSkqSJKWkpKhdu3YmJwJQHT++Pb9hGCanAZwXhcVNPP3008rLy1ObNm00bdo0s+MAqKaWLVvKYrGouLhYJ06cMDsO4LQoLG4gMzNTr7zyiiQpPT1d/v7+JicCUF1+fn668cYbJTEtBFwLhcXFXb58WWPHjpVhGBo2bJjuvPNOsyMBcBBPbQauj8Li4hYuXKgvv/xSTZs21R//+Eez4wCoAVYKAddHYXFhubm5mj59uiTpxRdfVGhoqMmJANQE92IBro/C4sImTpyo4uJi9enTR6NGjTI7DoAaYoQFuD4Ki4vauHGj3n33XXl7eys9PV1eXvyfEnBVFBbg+vgt54LOnz+v8ePHS5ImT56sTp06mZwIQG1UTAkdPXpUFy9eNDkN4JwoLC7oD3/4g3JzcxUbG6sZM2aYHQdALTVr1kxBQUGSpMOHD5sbBnBSFBYX89VXXyktLU2StHjxYjVq1MjcQABqzWKxMC0EXAeFxYWUl5dr7NixKi8v169//WvdfffdZkcCUEdYKQRcG4XFhSxbtkw7d+5U48aNNX/+fLPjAKhDjLAA10ZhcRF5eXlKSUmRJM2aNUuRkZEmJwJQl3hqM3BtFBYX8cQTT6iwsFA9e/bU448/bnYcAHWM2/MD10ZhcQHbtm3T6tWr5eXlpaVLl8pqtZodCUAd+/GUkGEYJqcBnA+FxcldvHhR48aNkyRNmDBBt9xyi8mJANSHmJgYWa1WXbp0ScePHzc7DuB0KCxObtasWTp48KCioqL03HPPmR0HQD3x8fFRTEyMJKaFgKpQWJzYvn379NJLL0mSFixYoMaNG5ucCEB9YqUQcHUUFidlGIYee+wxlZWV6d5779X9999vdiQA9YyVQsDVUVic1J///Gd98sknatSokRYtWiSLxWJ2JAD1jJVCwNVRWJzQyZMnNWXKFEk/PDeoZcuWJicC0BCYEgKujsLihKZMmaJTp06pc+fOmjRpktlxADQQbs8PXB2Fxcl8/PHH+vOf/yyLxaKlS5fKx8fH7EgAGkjFCEt+fr6Ki4tNTgM4FwqLEykpKdFjjz0mSRozZox69+5tciIADalJkyZq2rSpJOnQoUMmpwGcS40Ky+LFixUbGyt/f3/Fx8crMzPzqvv269dPFovlitc999wjSSorK9PUqVPVuXNnBQYGKjIyUsOHD9exY8dq9olc2Msvv6z9+/crNDRUqampZscBYAKmhYCqOVxY1qxZo+TkZM2cOVN79uxR165d1b9/fxUUFFS5/4YNG3T8+HH7a+/evbJarRo0aJAk6cKFC9qzZ4+mT5+uPXv2aMOGDcrKytKvfvWr2n0yF3PgwAE9//zzkqR58+bZ/ysLgGfhwlugat6OHjB37lyNHj1aI0eOlCSlp6dr8+bNevXVVzVt2rQr9m/WrFmln1evXq1GjRrZC0twcLA++OCDSvssWrRIcXFxysnJsd/58b+VlJSopKTE/nNRUZGjH8VpGIahxx9/XCUlJUpISNBDDz1kdiQAJuFeLEDVHBphKS0t1e7du5WQkPCfE3h5KSEhQTt27KjWOVasWKEhQ4YoMDDwqvsUFhbKYrGoSZMmV90nNTVVwcHB9ld0dHS1P4ezWb16tT744AP5+flpyZIl3HMF8GDciwWomkOF5eTJkyovL1dYWFil7WFhYcrLy7vu8ZmZmdq7d68effTRq+5z6dIlTZ06VQ899JCCgoKuul9KSooKCwvtr9zc3Op/ECdy9uxZPfHEE5Kkp59+WjfddJPJiQCYiSkhoGoOTwnVxooVK9S5c2fFxcVV+X5ZWZkefPBBGYahJUuWXPNcfn5+8vPzq4+YDSolJUX5+flq166dnnzySbPjADBZRWE5dOiQysvLZbVaTU4EOAeHRlhCQkJktVqVn59faXt+fr7Cw8OveWxxcbFWr16tUaNGVfl+RVk5cuSIPvjgg2uOrriLzz//XEuXLpX0w7VA7lDAANROdHS0vL29VVpa6pGrJYGrcaiw+Pr6qkePHsrIyLBvs9lsysjIuO49Q9atW6eSkhINGzbsivcqysq3336rv//972revLkjsVxSWVmZxo4dK8MwNGLECPXr18/sSACcgNVqVWxsrCSmhYAfc3hZc3JyspYvX66VK1dq3759GjdunIqLi+2rhoYPH66UlJQrjluxYoUGDhx4RRkpKyvTr3/9a33xxRdatWqVysvLlZeXp7y8PJWWltbwYzm/+fPn61//+peaNWumOXPmmB0HgBNhpRBwJYevYRk8eLBOnDihGTNmKC8vT926ddPWrVvtF+Lm5OTIy6tyD8rKytL27du1bdu2K8539OhRbdy4UZLUrVu3Su99+OGHbjnycOTIEc2cOVPSDzeLCwkJMTkRAGfCSiHgSjW66Hb8+PEaP358le999NFHV2xr166dDMOocv/Y2NirvueODMPQhAkTdOHCBd1+++32kSkAqMBKIeBKPEuogb377rvatGmTfHx8lJ6ezj1XAFyBKSHgShSWBnTu3DlNmDBBkjRlyhR17NjR5EQAnBFTQsCVKCwNaMaMGTp69Khat26t3//+92bHAeCkKkZYTp486dKPHQHqEoWlgezZs0cLFiyQJL3yyisKCAgwOREAZ9W4cWO1aNFCEqMsQAUKSwMoLy/X2LFjZbPZNHjwYPXv39/sSACcHBfeApVRWBrAkiVL9MUXXygoKEjz5s0zOw4AF8CFt0BlFJZ6duzYMT311FOSfnjCdEREhMmJALgCLrwFKqOw1LNJkybp3LlziouL09ixY82OA8BFMCUEVEZhqUfvvfee1q1bJ6vVqqVLl/LUVQDVxpQQUBmFpZ5cuHBBjz/+uCQpKSnpiscOAMC1VEwJHTlyRJcvXzY5DWA+Cks9ee6553T48GFFR0frmWeeMTsOABcTGRkpX19fXb58Wd9//73ZcQDTUVjqwd69e+1PYF64cKFuuOEGkxMBcDVeXl5q1aqVJKaFAInCUudsNpsee+wxXb58Wffdd5/uu+8+syMBcFGsFAL+g8JSx1599VV99tlnCgwM1MKFC82OA8CFsVII+A8KSx0qKCjQk08+KUl69tlnFR0dbXIiAK6MlULAf1BY6tDvfvc7nTlzRt26ddPEiRPNjgPAxTElBPwHhaWO/OMf/9Abb7whi8WipUuXytvb2+xIAFwcIyzAf1BY6kBJSYnGjRsnSRo3bpzi4uJMTgTAHVQUlrNnz+rMmTMmpwHMRWGpAy+88IKys7MVHh6u2bNnmx0HgJto1KiRwsPDJTEtBFBYaik7O9teUtLS0hQcHGxyIgDuhGkh4AcUllowDEPjxo1TaWmp+vfvrwcffNDsSADcDBfeAj+gsNTCqlWr9I9//EP+/v565ZVXZLFYzI4EwM1wLxbgBxSWGjp9+rSSk5MlSdOnT7f/owIAdYkpIeAHFJYamjZtmk6cOKGOHTvqd7/7ndlxALgppoSAH1BYauCzzz7T8uXLJUnp6eny9fU1OREAd1UxwpKTk6OysjKT0wDmobA4qKysTI899pgk6ZFHHtHtt99uciIA7iw8PFwBAQGy2Ww6cuSI2XEA01BYHDR37lzt3btXISEheumll8yOA8DNWSwWLrwFRGFxyKFDh/TMM89IkubMmaPmzZubnAiAJ6CwABSWajMMQ+PHj9fFixfVr18/DR8+3OxIADwEK4UACku1rV+/Xlu2bJGPj4+WLFnCPVcANBhWCgEUlmopKipSUlKSpB+WM7dv397kRAA8CSMsAIWlWn7/+9/r2LFjuummm/TUU0+ZHQeAh/nxNSyGYZicBjAHheU6vvjiCy1atEiStGTJEvn7+5ucCICnadWqlSTp3LlzOnXqlMlpAHNQWK7h8uXLGjt2rAzD0G9+8xslJCSYHQmAB/L391dUVJQkpoXguSgs13D69GkFBASoSZMmmjt3rtlxAHgwLryFp6OwXENoaKg++eQT7dixQ2FhYWbHAeDBuBcLPB2F5Tq8vLxYFQTAdKwUgqejsACAC2BKCJ6OwgIALoApIXg6CgsAuICKwvL999+rpKTE5DRAw6OwAIALaNGihW644QYZhqHDhw+bHQdocBQWAHABFouFaSF4NAoLALgIVgrBk9WosCxevFixsbHy9/dXfHy8MjMzr7pvv379ZLFYrnjdc8899n0Mw9CMGTMUERGhgIAAJSQk6Ntvv61JNABwW6wUgidzuLCsWbNGycnJmjlzpvbs2aOuXbuqf//+KigoqHL/DRs26Pjx4/bX3r17ZbVaNWjQIPs+L730khYsWKD09HTt3LlTgYGB6t+/vy5dulTzTwYAboYRFngyhwvL3LlzNXr0aI0cOVIdO3ZUenq6GjVqpFdffbXK/Zs1a6bw8HD764MPPlCjRo3shcUwDKWlpen3v/+97rvvPnXp0kWvv/66jh07pnffffeqOUpKSlRUVFTpBQDujGtY4MkcKiylpaXavXt3pYcAenl5KSEhQTt27KjWOVasWKEhQ4YoMDBQknTo0CHl5eVVOmdwcLDi4+Ovec7U1FQFBwfbX9HR0Y58FABwOT+eEjIMw+Q0QMNyqLCcPHlS5eXlVzxXJywsTHl5edc9PjMzU3v37tWjjz5q31ZxnKPnTElJUWFhof2Vm5vryEcBAJfTsmVLWSwWXbhwQfn5+WbHARpUg64SWrFihTp37qy4uLhan8vPz09BQUGVXgDgznx9fe2jyUwLwdM4VFhCQkJktVqvaPb5+fkKDw+/5rHFxcVavXq1Ro0aVWl7xXE1OScAeBpWCsFTOVRYfH191aNHD2VkZNi32Ww2ZWRkqHfv3tc8dt26dSopKdGwYcMqbW/VqpXCw8MrnbOoqEg7d+687jkBwNOwUgieytvRA5KTkzVixAj17NlTcXFxSktLU3FxsUaOHClJGj58uKKiopSamlrpuBUrVmjgwIFq3rx5pe0Wi0WTJk3S888/rzZt2qhVq1aaPn26IiMjNXDgwJp/MgBwQ4ywwFM5XFgGDx6sEydOaMaMGcrLy1O3bt20detW+0WzOTk58vKqPHCTlZWl7du3a9u2bVWe88knn1RxcbHGjBmjs2fP6qc//am2bt0qf3//GnwkAHBfLG2Gp7IYbrI2rqioSMHBwSosLOQCXABua9euXYqLi1NERISOHTtmdhyg1qr7+5tnCQGAC6mYEjp+/LguXLhgchqg4VBYAMCFNG3aVMHBwZKkw4cPmxsGaEAUFgBwIRaLhZVC8EgUFgBwMawUgieisACAi2GEBZ6IwgIALoalzfBEFBYAcDFMCcETUVgAwMX8eITFZrOZnAZoGBQWAHAx0dHRslqtKikp0fHjx82OAzQICgsAuBgfHx+1bNlSEtNC8BwUFgBwQawUgqehsACAC+LCW3gaCgsAuCCWNsPTUFgAwAUxJQRPQ2EBABfElBA8DYUFAFxQxQhLQUGBzp8/b3IaoP5RWADABQUHB6tZs2aSGGWBZ6CwAICLYloInoTCAgAuigtv4UkoLADgoljaDE9CYQEAF8WUEDwJhQUAXBRTQvAkFBYAcFEVheXw4cMqLy83OQ1QvygsAOCibrzxRvn4+KisrExHjx41Ow5QrygsAOCirFarYmNjJTEtBPdHYQEAF8ZKIXgKCgsAuDBWCsFTUFgAwIWxUgiegsICAC6MERZ4CgoLALgwrmGBp6CwAIALa9WqlSTp1KlTKiwsNDkNUH8oLADgwho3bqzQ0FBJjLLAvVFYAMDFceEtPAGFBQBcHNexwBNQWADAxbFSCJ6AwgIALo4pIXgCCgsAuDimhOAJKCwA4OIqpoSOHDmiy5cvm5wGqB8UFgBwcREREfLz81N5eblycnLMjgPUCwoLALg4Ly8v+w3kmBaCu6KwAIAbYKUQ3B2FBQDcACuF4O4oLADgBlgpBHdXo8KyePFixcbGyt/fX/Hx8crMzLzm/mfPnlViYqL9wrC2bdtqy5Yt9vfLy8s1ffp0tWrVSgEBAfrJT36i5557ToZh1CQeAHgcpoTg7rwdPWDNmjVKTk5Wenq64uPjlZaWpv79+ysrK8v+AK4fKy0t1V133aXQ0FC9/fbbioqK0pEjR9SkSRP7Pi+++KKWLFmilStX6uabb9YXX3yhkSNHKjg4WBMnTqzVBwQAT/DjKSHDMGSxWExOBNQti+HgMEZ8fLx69eqlRYsWSZJsNpuio6M1YcIETZs27Yr909PT9fLLL2v//v3y8fGp8pz33nuvwsLCtGLFCvu2Bx54QAEBAfrLX/5S5TElJSUqKSmx/1xUVKTo6GgVFhYqKCjIkY8EAC7vwoULCgwMlCSdOnVKzZo1MzkRUD1FRUUKDg6+7u9vh6aESktLtXv3biUkJPznBF5eSkhI0I4dO6o8ZuPGjerdu7cSExMVFhamTp06afbs2SovL7fvc9tttykjI0PZ2dmSpK+++krbt2/XL3/5y6tmSU1NVXBwsP0VHR3tyEcBALfSqFEjRURESOLCW7gnhwrLyZMnVV5errCwsErbw8LClJeXV+UxBw8e1Ntvv63y8nJt2bJF06dP1x//+Ec9//zz9n2mTZumIUOGqH379vLx8VH37t01adIkDR069KpZUlJSVFhYaH/l5uY68lEAwO1w4S3cmcPXsDjKZrMpNDRUy5Ytk9VqVY8ePXT06FG9/PLLmjlzpiRp7dq1WrVqld58803dfPPN+vLLLzVp0iRFRkZqxIgRVZ7Xz89Pfn5+9R0fAFzGT37yE3322WcUFrglhwpLSEiIrFar8vPzK23Pz89XeHh4lcdERETIx8dHVqvVvq1Dhw7Ky8tTaWmpfH19NWXKFPsoiyR17txZR44cUWpq6lULCwCgMu7FAnfm0JSQr6+vevTooYyMDPs2m82mjIwM9e7du8pj+vTpowMHDshms9m3ZWdnKyIiQr6+vpJ+uFjMy6tyFKvVWukYAMC1MSUEd+bwfViSk5O1fPlyrVy5Uvv27dO4ceNUXFyskSNHSpKGDx+ulJQU+/7jxo3T6dOnlZSUpOzsbG3evFmzZ89WYmKifZ8BAwZo1qxZ2rx5sw4fPqx33nlHc+fO1f33318HHxEAPAP3YoE7c/galsGDB+vEiROaMWOG8vLy1K1bN23dutV+IW5OTk6l0ZLo6Gi9//77euKJJ9SlSxdFRUUpKSlJU6dOte+zcOFCTZ8+XY8//rgKCgoUGRmpsWPHasaMGXXwEQHAM1SMsOTm5tqn3AF34fB9WJxVdddxA4C7MgxDN9xwgy5cuKDs7Gy1adPG7EjAddXLfVgAAM7LYrFwHQvcFoUFANwIK4XgrigsAOBGGGGBu6KwAIAbYaUQ3BWFBQDcCFNCcFcUFgBwIz8eYXGTRaCAJAoLALiVli1bymKx6Pz58zpx4oTZcYA6Q2EBADfi7++vqKgoSVzHAvdCYQEAN8OFt3BHFBYAcDNceAt3RGEBADfDvVjgjigsAOBmmBKCO6KwAICbYUoI7ojCAgBupqKwHD16VJcuXTI5DVA3KCwA4GZCQkLUuHFjSdLhw4fNDQPUEQoLALgZi8XCtBDcDoUFANwQK4XgbigsAOCGWCkEd0NhAQA3xJQQ3A2FBQDcEFNCcDcUFgBwQz+eEjIMw+Q0QO1RWADADcXExMjLy0sXL15UXl6e2XGAWqOwAIAb8vX1VUxMjCSmheAeKCwA4Ka48BbuhMICAG6KC2/hTigsAOCmuBcL3AmFBQDcFFNCcCcUFgBwU0wJwZ1QWADATVVMCeXl5enChQsmpwFqh8ICAG6qadOmatKkiSRGWeD6KCwA4MaYFoK7oLAAgBtjpRDcBYUFANwYK4XgLigsAODGmBKCu6CwAIAbq5gSYoQFro7CAgBurGKE5dChQ7LZbCanAWqOwgIAbiw6Olre3t4qLS3VsWPHzI4D1BiFBQDcmLe3t1q2bCmJaSG4NgoLALg5LryFO6CwAICb414scAcUFgBwc9yLBe6AwgIAbo4pIbiDGhWWxYsXKzY2Vv7+/oqPj1dmZuY19z979qwSExMVEREhPz8/tW3bVlu2bKm0z9GjRzVs2DA1b95cAQEB6ty5s7744ouaxAMA/AhTQnAH3o4esGbNGiUnJys9PV3x8fFKS0tT//79lZWVpdDQ0Cv2Ly0t1V133aXQ0FC9/fbbioqK0pEjR+xPEJWkM2fOqE+fPrrjjjv03nvvqUWLFvr222/VtGnTWn04AIDUqlUrSdKJEyd07tw5NW7c2OREgOMshmEYjhwQHx+vXr16adGiRZIkm82m6OhoTZgwQdOmTbti//T0dL388svav3+/fHx8qjzntGnT9Nlnn+nTTz+twUf4QVFRkYKDg1VYWKigoKAanwcA3FFISIhOnTqlL7/8Ul27djU7DmBX3d/fDk0JlZaWavfu3UpISPjPCby8lJCQoB07dlR5zMaNG9W7d28lJiYqLCxMnTp10uzZs1VeXl5pn549e2rQoEEKDQ1V9+7dtXz58mtmKSkpUVFRUaUXAKBqTAvB1TlUWE6ePKny8nKFhYVV2h4WFqa8vLwqjzl48KDefvttlZeXa8uWLZo+fbr++Mc/6vnnn6+0z5IlS9SmTRu9//77GjdunCZOnKiVK1deNUtqaqqCg4Ptr+joaEc+CgB4FFYKwdU5fA2Lo2w2m0JDQ7Vs2TJZrVb16NFDR48e1csvv6yZM2fa9+nZs6dmz54tSerevbv27t2r9PR0jRgxosrzpqSkKDk52f5zUVERpQUAroKVQnB1DhWWkJAQWa1W5efnV9qen5+v8PDwKo+JiIiQj4+PrFarfVuHDh2Ul5en0tJS+fr6KiIiQh07dqx0XIcOHbR+/fqrZvHz85Ofn58j8QHAY/HUZrg6h6aEfH191aNHD2VkZNi32Ww2ZWRkqHfv3lUe06dPHx04cKDSU0Kzs7MVEREhX19f+z5ZWVmVjsvOzrY//wIAUDuMsMDVOXwfluTkZC1fvlwrV67Uvn37NG7cOBUXF2vkyJGSpOHDhyslJcW+/7hx43T69GklJSUpOztbmzdv1uzZs5WYmGjf54knntDnn3+u2bNn68CBA3rzzTe1bNmySvsAAGquorAcPny40qIHwFU4fA3L4MGDdeLECc2YMUN5eXnq1q2btm7dar8QNycnR15e/+lB0dHRev/99/XEE0+oS5cuioqKUlJSkqZOnWrfp1evXnrnnXeUkpKiZ599Vq1atVJaWpqGDh1aBx8RABAVFSVfX1+VlpYqNzdXsbGxZkcCHOLwfVicFfdhAYBra9eunbKzs5WRkaE777zT7DiApHq6DwsAwHVxLxa4MgoLAHgI7sUCV0ZhAQAPwUohuDIKCwB4CKaE4MooLADgIZgSgiujsACAh2jVqpUk6cyZMzpz5ozJaQDHUFgAwEPccMMN9ntmHTp0yOQ0gGMoLADgQZgWgquisACAB2GlEFwVhQUAPAhPbYarorAAgAdhhAWuisICAB6EwgJXRWEBAA9SMSWUk5OjsrIyk9MA1UdhAQAPEh4eLn9/f5WXlysnJ8fsOEC1UVgAwIN4eXnZbyDHtBBcCYUFADwMK4XgiigsAOBhuPAWrojCAgAehqc2wxVRWADAw3B7frgiCgsAeJgfTwkZhmFyGqB6KCwA4GEqVgkVFRXp1KlTJqcBqofCAgAeJiAgQJGRkZK4jgWug8ICAB6IlUJwNRQWAPBA3IsFrobCAgAeiBEWuBoKCwB4IAoLXA2FBQA8EFNCcDUUFgDwQBUjLN9//71KSkpMTgNcH4UFADxQaGioAgMDZRiGjhw5YnYc4LooLADggSwWC7foh0uhsACAh+LCW7gSCgsAeCgKC1wJhQUAPBQrheBKKCwA4KEYYYErobAAgIeqGGE5ePCgDMMwOQ1wbRQWAPBQLVu2lMViUXFxsQoKCsyOA1wThQUAPJSfn59uvPFGSUwLwflRWADAg3HhLVwFhQUAPBgX3sJVUFgAwINRWOAqKCwA4MGYEoKroLAAgAdjhAWugsICAB6sorAcO3ZMFy9eNDkNcHU1KiyLFy9WbGys/P39FR8fr8zMzGvuf/bsWSUmJioiIkJ+fn5q27attmzZUuW+L7zwgiwWiyZNmlSTaAAABzRv3lxBQUGSpEOHDpmcBrg6hwvLmjVrlJycrJkzZ2rPnj3q2rWr+vfvf9WbDpWWluquu+7S4cOH9fbbbysrK0vLly9XVFTUFfvu2rVLS5cuVZcuXRz/JAAAh1ksFqaF4BIcLixz587V6NGjNXLkSHXs2FHp6elq1KiRXn311Sr3f/XVV3X69Gm9++676tOnj2JjY9W3b1917dq10n7nz5/X0KFDtXz5cjVt2rRmnwYA4DAKC1yBQ4WltLRUu3fvVkJCwn9O4OWlhIQE7dixo8pjNm7cqN69eysxMVFhYWHq1KmTZs+erfLy8kr7JSYm6p577ql07mspKSlRUVFRpRcAwHGsFIIr8HZk55MnT6q8vFxhYWGVtoeFhWn//v1VHnPw4EH94x//0NChQ7VlyxYdOHBAjz/+uMrKyjRz5kxJ0urVq7Vnzx7t2rWr2llSU1P1zDPPOBIfAFAFRljgCup9lZDNZlNoaKiWLVumHj16aPDgwXr66aeVnp4uScrNzVVSUpJWrVolf3//ap83JSVFhYWF9ldubm59fQQAcGuMsMAVODTCEhISIqvVqvz8/Erb8/PzFR4eXuUxERER8vHxkdVqtW/r0KGD8vLy7FNMBQUFuuWWW+zvl5eX65NPPtGiRYtUUlJS6dgKfn5+8vPzcyQ+AKAKFSMshw4dks1mk5cXd7yA83Hob6Wvr6969OihjIwM+zabzaaMjAz17t27ymP69OmjAwcOyGaz2bdlZ2crIiJCvr6++p//+R99/fXX+vLLL+2vnj17aujQofryyy+rLCsAgLoTExMjq9WqS5cuKS8vz+w4QJUcrtHJyclavny5Vq5cqX379mncuHEqLi7WyJEjJUnDhw9XSkqKff9x48bp9OnTSkpKUnZ2tjZv3qzZs2crMTFRktS4cWN16tSp0iswMFDNmzdXp06d6uhjAgCuxsfHRzExMZKYFoLzcmhKSJIGDx6sEydOaMaMGcrLy1O3bt20detW+4W4OTk5lYYTo6Oj9f777+uJJ55Qly5dFBUVpaSkJE2dOrXuPgUAoFZat26tQ4cO6eDBg7r99tvNjgNcwWIYhmF2iLpQVFSk4OBgFRYW2u/aCAConjFjxmj58uWaMWMGKzDRoKr7+9vhERYAgPupWCm0d+9eHTlyxOQ0cFY33nijadeWUlgAAPaVQhs2bNCGDRtMTgNndfz48auuCq5vFBYAgO644w61bdtWOTk5ZkcBqkRhAQAoJCREWVlZZscAroq7AwEAAKdHYQEAAE6PwgIAAJwehQUAADg9CgsAAHB6FBYAAOD0KCwAAMDpUVgAAIDTo7AAAACnR2EBAABOj8ICAACcHoUFAAA4PQoLAABwehQWAADg9LzNDlBXDMOQJBUVFZmcBAAAVFfF7+2K3+NX4zaF5dy5c5Kk6Ohok5MAAABHnTt3TsHBwVd932Jcr9K4CJvNpmPHjqlx48ayWCx1dt6ioiJFR0crNzdXQUFBdXZeVMb33HD4rhsG33PD4HtuGPX5PRuGoXPnzikyMlJeXle/UsVtRli8vLx044031tv5g4KC+H+GBsD33HD4rhsG33PD4HtuGPX1PV9rZKUCF90CAACnR2EBAABOj8JyHX5+fpo5c6b8/PzMjuLW+J4bDt91w+B7bhh8zw3DGb5nt7noFgAAuC9GWAAAgNOjsAAAAKdHYQEAAE6PwgIAAJwehaWaDh8+rFGjRqlVq1YKCAjQT37yE82cOVOlpaVmR3MLixcvVmxsrPz9/RUfH6/MzEyzI7mV1NRU9erVS40bN1ZoaKgGDhyorKwss2O5vRdeeEEWi0WTJk0yO4rbOXr0qIYNG6bmzZsrICBAnTt31hdffGF2LLdTXl6u6dOnV/rd99xzz133uT/1wW3udFvf9u/fL5vNpqVLl+qmm27S3r17NXr0aBUXF2vOnDlmx3Npa9asUXJystLT0xUfH6+0tDT1799fWVlZCg0NNTueW/j444+VmJioXr166fLly3rqqaf085//XN98840CAwPNjueWdu3apaVLl6pLly5mR3E7Z86cUZ8+fXTHHXfovffeU4sWLfTtt9+qadOmZkdzOy+++KKWLFmilStX6uabb9YXX3yhkSNHKjg4WBMnTmzQLCxrroWXX35ZS5Ys0cGDB82O4tLi4+PVq1cvLVq0SNIPz4WKjo7WhAkTNG3aNJPTuacTJ04oNDRUH3/8sX72s5+ZHcftnD9/XrfccoteeeUVPf/88+rWrZvS0tLMjuU2pk2bps8++0yffvqp2VHc3r333quwsDCtWLHCvu2BBx5QQECA/vKXvzRoFqaEaqGwsFDNmjUzO4ZLKy0t1e7du5WQkGDf5uXlpYSEBO3YscPEZO6tsLBQkvj7W08SExN1zz33VPp7jbqzceNG9ezZU4MGDVJoaKi6d++u5cuXmx3LLd12223KyMhQdna2JOmrr77S9u3b9ctf/rLBszAlVEMHDhzQwoULmQ6qpZMnT6q8vFxhYWGVtoeFhWn//v0mpXJvNptNkyZNUp8+fdSpUyez47id1atXa8+ePdq1a5fZUdzWwYMHtWTJEiUnJ+upp57Srl27NHHiRPn6+mrEiBFmx3Mr06ZNU1FRkdq3by+r1ary8nLNmjVLQ4cObfAsHj/CMm3aNFkslmu+/vsX59GjR/WLX/xCgwYN0ujRo01KDtRMYmKi9u7dq9WrV5sdxe3k5uYqKSlJq1atkr+/v9lx3JbNZtMtt9yi2bNnq3v37hozZoxGjx6t9PR0s6O5nbVr12rVqlV68803tWfPHq1cuVJz5szRypUrGzyLx4+wTJ48Wb/97W+vuU/r1q3t//vYsWO64447dNttt2nZsmX1nM79hYSEyGq1Kj8/v9L2/Px8hYeHm5TKfY0fP15/+9vf9Mknn+jGG280O47b2b17twoKCnTLLbfYt5WXl+uTTz7RokWLVFJSIqvVamJC9xAREaGOHTtW2tahQwetX7/epETua8qUKZo2bZqGDBkiSercubOOHDmi1NTUBh/N8vjC0qJFC7Vo0aJa+x49elR33HGHevTooddee01eXh4/QFVrvr6+6tGjhzIyMjRw4EBJP/zXU0ZGhsaPH29uODdiGIYmTJigd955Rx999JFatWpldiS39D//8z/6+uuvK20bOXKk2rdvr6lTp1JW6kifPn2uWJafnZ2tli1bmpTIfV24cOGK33VWq1U2m63Bs3h8Yamuo0ePql+/fmrZsqXmzJmjEydO2N9jJKB2kpOTNWLECPXs2VNxcXFKS0tTcXGxRo4caXY0t5GYmKg333xTf/3rX9W4cWPl5eVJkoKDgxUQEGByOvfRuHHjK64LCgwMVPPmzbleqA498cQTuu222zR79mw9+OCDyszM1LJlyxj1rgcDBgzQrFmzFBMTo5tvvln//Oc/NXfuXD3yyCMNH8ZAtbz22muGpCpfqL2FCxcaMTExhq+vrxEXF2d8/vnnZkdyK1f7u/vaa6+ZHc3t9e3b10hKSjI7htvZtGmT0alTJ8PPz89o3769sWzZMrMjuaWioiIjKSnJiImJMfz9/Y3WrVsbTz/9tFFSUtLgWbgPCwAAcHpchAEAAJwehQUAADg9CgsAAHB6FBYAAOD0KCwAAMDpUVgAAIDTo7AAAACnR2EBAABOj8ICwFT9+vXTpEmTrvp+bGys0tLSGiwPAOfEs4QAOLVdu3YpMDDQ7BgATEZhAeDUqvs0dQDujSkhAKa7fPmyxo8fr+DgYIWEhGj69OmqeMzZf08JWSwW/elPf9L999+vRo0aqU2bNtq4caNJyQE0FAoLANOtXLlS3t7eyszM1Pz58zV37lz96U9/uur+zzzzjB588EH961//0t13362hQ4fq9OnTDZgYQEOjsAAwXXR0tObNm6d27dpp6NChmjBhgubNm3fV/X/729/qoYce0k033aTZs2fr/PnzyszMbMDEABoahQWA6W699VZZLBb7z71799a3336r8vLyKvfv0qWL/X8HBgYqKChIBQUF9Z4TgHkoLABcjo+PT6WfLRaLbDabSWkANAQKCwDT7dy5s9LPn3/+udq0aSOr1WpSIgDOhsICwHQ5OTlKTk5WVlaW3nrrLS1cuFBJSUlmxwLgRLgPCwDTDR8+XBcvXlRcXJysVquSkpI0ZswYs2MBcCIWo+JmBwAAAE6KKSEAAOD0KCwAAMDpUVgAAIDTo7AAAACnR2EBAABOj8ICAACcHoUFAAA4PQoLAABwehQWAADg9CgsAADA6VFYAACA0/t/2begRnBMYu8AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# scikit-learn model\n", "gradient_booster = GradientBoostingClassifier(learning_rate=0.1)\n", "gradient_booster.fit(X, y)\n", "\n", "# explainable model\n", "model = ModelApi().create_model(target_col=target_col, model_src=gradient_booster, used_features=X.columns.to_list())\n", "\n", "interpretation = interpret.run_interpretation(\n", " dataset=df,\n", " model=model,\n", " target_col=target_col,\n", " results_location=results_location,\n", " log_level=logging.INFO,\n", " explainers=[\n", " commons.ExplainerToRun(\n", " explainer_id=PdIceExplainer.explainer_id(),\n", " params=\"\",\n", " )\n", " ]\n", ")" ] }, { "cell_type": "markdown", "id": "ff9df4be-d4da-44db-a479-7d8d7f45c29d", "metadata": {}, "source": [ "## Explainer Result" ] }, { "cell_type": "code", "execution_count": 19, "id": "25556ca5-8239-4201-8a23-1ace2b3a46d4", "metadata": {}, "outputs": [], "source": [ "# retrieve the result\n", "result = interpretation.get_explainer_result(PdIceExplainer.explainer_id())" ] }, { "cell_type": "code", "execution_count": 20, "id": "38c26ac9-df8e-480f-ab6c-c14b43860c5d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# open interpretation HTML report in web browser\n", "webbrowser.open(interpretation.result.get_html_report_location())" ] }, { "cell_type": "code", "execution_count": 21, "id": "76c46623-6e24-4ac1-b6cc-66fc29b7ea0c", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'id': 'h2o_sonar.explainers.pd_ice_explainer.PdIceExplainer',\n", " 'name': 'PdIceExplainer',\n", " 'display_name': 'Partial Dependence Plot',\n", " 'description': 'Partial dependence plot (PDP) portrays the average prediction\\nbehavior of the model across the domain of an input variable along with +/- 1\\nstandard deviation bands. Individual Conditional Expectations plot (ICE) displays\\nthe prediction behavior for an individual row of data when an input variable is\\ntoggled across its domain.\\n\\nPD binning:\\n\\n**Integer** feature:\\n\\n* bins in **numeric** mode:\\n * bins are integers\\n * (at most) `grid_resolution` integer values in between minimum and maximum\\n of feature values\\n * bin values are created as evenly as possible\\n * minimum and maximum is included in bins\\n (if `grid_resolution` is bigger or equal to 2)\\n* bins in **categorical** mode:\\n * bins are integers\\n * top `grid_resolution` values from feature values ordered by frequency\\n (int values are converted to strings and most frequent values are used\\n as bins)\\n* quantile bins in **numeric** mode:\\n * bins are integers\\n * bin values are created with the aim that there will be the same number of\\n observations per bin\\n * q-quantile used to created ``q`` bins where ``q`` is specified by PD parameter\\n* quantile bins in **categorical** mode:\\n * not supported\\n\\n**Float** feature:\\n\\n* bins in **numeric** mode:\\n * bins are floats\\n * `grid_resolution` float values in between minimum and maximum of feature\\n values\\n * bin values are created as evenly as possible\\n * minimum and maximum is included in bins\\n (if `grid_resolution` is bigger or equal to 2)\\n* bins in **categorical** mode:\\n * bins are floats\\n * top `grid_resolution` values from feature values ordered by frequency\\n (float values are converted to strings and most frequent values are used\\n as bins)\\n* quantile bins in **numeric** mode:\\n * bins are floats\\n * bin values are created with the aim that there will be the same number of\\n observations per bin\\n * q-quantile used to created ``q`` bins where ``q`` is specified by PD parameter\\n* quantile bins in **categorical** mode:\\n * not supported\\n\\n**String** feature:\\n\\n* bins in **numeric** mode:\\n * not supported\\n* bins in **categorical** mode:\\n * bins are strings\\n * top `grid_resolution` values from feature values ordered by frequency\\n* quantile bins:\\n * not supported\\n\\n**Date/datetime** feature:\\n\\n* bins in **numeric** mode:\\n * bins are dates\\n * `grid_resolution` date values in between minimum and maximum of feature\\n values\\n * bin values are created as evenly as possible:\\n 1. dates are parsed and converted to epoch timestamps i.e integers\\n 2. bins are created as in case of numeric integer binning\\n 3. integer bins are converted back to original date format\\n * minimum and maximum is included in bins\\n (if `grid_resolution` is bigger or equal to 2)\\n* bins in **categorical** mode:\\n * bins are dates\\n * top `grid_resolution` values from feature values ordered by frequency\\n (dates are handled as opaque strings and most frequent values are used\\n as bins)\\n* quantile bins:\\n * not supported\\n\\nPD out of range binning:\\n\\n**Integer** feature:\\n\\n* OOR bins in **numeric** mode:\\n * OOR bins are integers\\n * (at most) `oor_grid_resolution` integer values are added below minimum and\\n above maximum\\n * bin values are created by adding/substracting rounded standard deviation\\n (of feature values) above and below maximum and minimum `oor_grid_resolution`\\n times\\n * 1 used used if rounded standard deviation would be 0\\n * if feature is of unsigned integer type, then bins below 0\\n are not created\\n * if rounded standard deviation and/or `oor_grid_resolution` is so high\\n that it would cause lower OOR bins to be negative numbers, then standard\\n deviation of size 1 is tried instead\\n* OOR bins in **categorical** mode:\\n * same as numeric mode\\n\\n**Float** feature:\\n\\n* OOR bins in **numeric** mode:\\n * OOR bins are floats\\n * `oor_grid_resolution` float values are added below minimum and above maximum\\n * bin values are created by adding/substracting standard deviation\\n (of feature values) above and below maximum and minimum `oor_grid_resolution`\\n times\\n* OOR bins in **categorical** mode:\\n * same as numeric mode\\n\\n**String** feature:\\n\\n* bins in **numeric** mode:\\n * not supported\\n* bins in **categorical** mode:\\n * OOR bins are strings\\n * value `UNSEEN` is added as OOR bin\\n\\n**Date** feature:\\n\\n* bins in **numeric** mode:\\n * not supported\\n* bins in **categorical** mode:\\n * OOR bins are strings\\n * value `UNSEEN` is added as OOR bin\\n\\n',\n", " 'model_types': ['iid', 'time_series'],\n", " 'can_explain': ['regression', 'binomial', 'multinomial'],\n", " 'explanation_scopes': ['global_scope', 'local_scope'],\n", " 'explanations': [{'explanation_type': 'global-partial-dependence',\n", " 'name': 'Partial Dependence Plot (PDP)',\n", " 'category': 'DAI MODEL',\n", " 'scope': 'global',\n", " 'has_local': 'local-individual-conditional-explanation',\n", " 'formats': ['application/json']},\n", " {'explanation_type': 'local-individual-conditional-explanation',\n", " 'name': 'Individual Conditional Expectations (ICE)',\n", " 'category': 'DAI MODEL',\n", " 'scope': 'local',\n", " 'has_local': None,\n", " 'formats': ['application/vnd.h2oai.json+datatable.jay']},\n", " {'explanation_type': 'global-html-fragment',\n", " 'name': 'Partial Dependence Plot (PDP)',\n", " 'category': 'DAI MODEL',\n", " 'scope': 'global',\n", " 'has_local': None,\n", " 'formats': ['text/html']}],\n", " 'parameters': [{'name': 'sample_size',\n", " 'description': 'Sample size for Partial Dependence Plot.',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 25000,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'max_features',\n", " 'description': 'Partial Dependence Plot number of features (to see all features used by model set to -1).',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 10,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'features',\n", " 'description': 'Partial Dependence Plot feature list.',\n", " 'comment': '',\n", " 'type': 'list',\n", " 'val': None,\n", " 'predefined': [],\n", " 'tags': ['SOURCE_DATASET_COLUMN_NAMES'],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'oor_grid_resolution',\n", " 'description': 'Partial Dependence Plot number of out of range bins.',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 0,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'quantile-bin-grid-resolution',\n", " 'description': 'Partial Dependence Plot quantile binning (total quantile points used to create bins).',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 0,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'grid_resolution',\n", " 'description': 'Partial Dependence Plot observations per bin (number of equally spaced points used to create bins).',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 20,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'center',\n", " 'description': 'Center Partial Dependence Plot using ICE centered at 0.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': False,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'sort_bins',\n", " 'description': 'Ensure bin values sorting.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': True,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'histograms',\n", " 'description': 'Enable histograms.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': True,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'quantile-bins',\n", " 'description': 'Per-feature quantile binning (Example: if choosing features\\n F1 and F2, this parameter is \\'{\"F1\": 2,\"F2\": 5}\\'. Note, you can\\n set all features to use the same quantile binning with the\\n `Partial Dependence Plot quantile binning` parameter and then\\n adjust the quantile binning for a subset of PDP features with\\n this parameter).',\n", " 'comment': '',\n", " 'type': 'str',\n", " 'val': '',\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'numcat_num_chart',\n", " 'description': 'Unique feature values count driven Partial Dependence Plot binning and chart selection.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': True,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'numcat_threshold',\n", " 'description': 'Threshold for Partial Dependence Plot binning and chart selection (<=threshold categorical, >threshold numeric).',\n", " 'comment': '',\n", " 'type': 'int',\n", " 'val': 11,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''},\n", " {'name': 'debug_residuals',\n", " 'description': 'Debug model residuals.',\n", " 'comment': '',\n", " 'type': 'bool',\n", " 'val': False,\n", " 'predefined': [],\n", " 'tags': [],\n", " 'min_': 0.0,\n", " 'max_': 0.0,\n", " 'category': ''}],\n", " 'keywords': ['run-by-default',\n", " 'can-add-feature',\n", " 'explains-feature-behavior',\n", " 'h2o-sonar']}" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# summary\n", "result.summary()" ] }, { "cell_type": "code", "execution_count": 22, "id": "e30e08f6-69b9-408f-8bd6-6dad14638694", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'sample_size': 25000,\n", " 'max_features': 10,\n", " 'features': None,\n", " 'oor_grid_resolution': 0,\n", " 'quantile-bin-grid-resolution': 0,\n", " 'grid_resolution': 20,\n", " 'center': False,\n", " 'sort_bins': True,\n", " 'histograms': True,\n", " 'quantile-bins': '',\n", " 'numcat_num_chart': True,\n", " 'numcat_threshold': 11,\n", " 'debug_residuals': False}" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# parameters\n", "result.params()" ] }, { "cell_type": "markdown", "id": "490d132b-b7e2-48a2-8ec4-dbd71886edf9", "metadata": {}, "source": [ "### Display PD Data" ] }, { "cell_type": "code", "execution_count": 23, "id": "2aa6274e-79d5-49b1-b29a-2263db5cb8a8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
binpdsdoor
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
000.76390.4247060
110.72480.4466370
220.72480.4466370
330.72480.4466370
440.72480.4466370
550.72480.4466370
660.72480.4466370
\n", " \n", "
\n" ], "text/plain": [ "" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.data(feature_name=\"EDUCATION\")" ] }, { "cell_type": "code", "execution_count": 24, "id": "9519fbef-d7b7-417a-85f2-2450ae9c1ddf", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
binpdsdoor
▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪▪
0−20.72480.4466370
1−10.72480.4466370
200.72480.4466370
310.72480.4466370
420.72480.4466370
530.72480.4466370
640.72480.4466370
750.72480.4466370
860.72480.4466370
970.72480.4466370
1080.72480.4466370
\n", " \n", "
\n" ], "text/plain": [ "" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.data(feature_name=\"PAY_3\")" ] }, { "cell_type": "markdown", "id": "df8a083b-3b88-4349-bb63-28551c24cc4f", "metadata": {}, "source": [ "### Plot PD Data" ] }, { "cell_type": "code", "execution_count": 25, "id": "5a9d8262-574e-4073-a282-567d4fd1209c", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAHCCAYAAAA92skLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvPUlEQVR4nO3df1TUdb7H8dcw/JIM1FBAGsVW0zwVtCCI1drepqhrbvZr0S0xTumtFbOm7lmplLS7UddUOmnSDy1vWppl2481qjObndtdlIK1n0paGfSDX1syhgbJfO8fHaedYIhB8AP4fJzzPaf5zOfz/b7nvdvy2u/3O9+xWZZlCQAAwJAQ0wUAAIDjG2EEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAfqBJ554QjabLeC2fft2SfIbCw0N1ZAhQ5Samqr58+fro48+arPfbdu2yWaz6dlnn233uHl5ebLZbG3GW1tb9fjjj+u8887TkCFDFBERoaSkJOXm5uqdd95pd18PPfSQbDabMjIy/MaTkpI6/GxHtieeeML3GfPy8trs/5///Kf+8z//U2PHjlVkZKSGDBmirKwsvfzyy23m7tu3z7ff5557rs37d911l2w2mxoaGtr9LACCE2q6AADdZ8mSJRo1alSb8dGjR/v++YILLlBOTo4sy1JjY6PeffddrVu3Tg899JDuu+8+uVyuo6rh0KFDuvzyy1VSUqLf/OY3uv322zVkyBDt27dPzzzzjNatW6eqqiqdfPLJfus2bNigpKQklZWVae/evb6ai4qK9N133/nmbd26VU8//bRWrFih2NhY3/ikSZMC1lRZWanzzz9f9fX1ys3NVVpamvbv368NGzZo6tSpuu2227R06dJ21y5ZskSXX355u6ELQDexAPR5jz/+uCXJevvttzucJ8maO3dum/GGhgYrMzPTkmT99a9/9Y2/8cYbliRr8+bN7e5v7ty51s//Z+TI2IoVK9rMP3z4sLV06VKrurrab/zTTz+1JFlbtmyxhg4dat11110BP8PSpUstSdZnn33Wqc/Y0tJinX766VZUVJS1ffv2NvVkZ2dbkqyNGzf6xj/77DNLkpWSkmJJsp577jm/dQUFBZYkq76+PmCdADqPyzQAdNJJJ2njxo0KDQ3Vn//85y7v54svvtDDDz+sCy64QDfffHOb9+12u2677bZ2z4oMHjxYU6ZM0ZVXXqkNGzZ0uYafe+655/TBBx9owYIFbS4B2e12Pfzwwxo0aJDuuuuuNmunT5+uU089VUuWLJHFD5wDPYYwAvQjjY2Namho8Nv++c9/dmrtiBEjNHnyZG3fvl0ej6dLx3/llVd0+PBhzZw5M6h1GzZs0OWXX67w8HDNmDFDe/bs0dtvv92lGn7upZdekiTl5OS0+35MTIwuvfRS7d69W3v37vV7z263684779S7776r559/vlvqAdAWYQToR5xOp4YOHeq3JSYmdnr96aefLq/Xq3379nXp+Lt27ZIknXHGGZ1eU15ert27d2v69OmSpHPOOUcnn3xyt50d+eijjxQTE6ORI0cGnJOcnCzpp/r/1R/+8AeNGTOGsyNAD+IGVqAfWbVqlU499VS/Mbvd3un1AwcOlCQdOHCgS8c/ckblxBNP7PSaDRs2KC4uTr/97W8l/fhtmOzsbK1fv17Lli0Lqv72HDhw4BfrOfJ+e2eEjpwdmTVrlv7yl7/osssuO6p6ALRFGAH6kfT0dKWlpXV5/ZFvrQQTJv5VdHS0pM6HmdbWVm3cuFG//e1v9dlnn/nGMzIytGzZMrndbl144YVdquWIE0888Re/gnuk3kCf++qrr9bdd9+tJUuWaNq0aUdVD4C2uEwDwOeDDz6Q3W73fT04MjJS0o9f123PwYMHfXMkady4cZKk999/v1PH+9vf/qavv/5aGzdu1JgxY3zb73//e0nqlks1p512mhobG1VVVRVwznvvvSdJGj9+fLvvHzk7snPnTr3wwgtHXRMAf4QRAJKkqqoqvfnmm8rMzPSdIThyn0VlZWW7ayorK/3uxbj44otlt9u1fv36Th1zw4YNGjZsmDZv3txmmzFjhp5//vmAQaizLrnkEknS//zP/7T7vsfj0QsvvKBx48b5PY/l56655hqNHj1aixcv5t4RoJsRRgDom2++0YwZM9Ta2qo77rjDN56QkKCUlBStX79e+/fv91tTXl6u7du36+KLL/aNORwOzZ49W6+99poefPDBNsfxer1atmyZvvjiCx06dEhbtmzRJZdcoiuvvLLNlpeXpwMHDujFF188qs925ZVXavz48br33nvbPP3V6/Xqxhtv1LfffquCgoIO9/OvZ0eOtiYA/rhnBOhHXnnlFe3evbvN+KRJk3TKKadIkj7++GOtX79elmXJ4/Ho3Xff1ebNm/Xdd99p+fLluuiii/zWLl++XFlZWUpJSdG1116r4cOHa9euXXrkkUeUkJCg/Px8v/nLli3TJ598optuuskXNgYPHqyqqipt3rzZ982ZF198UQcOHNDvfve7dj/LxIkTNXToUG3YsEHZ2dld7kl4eLieffZZnX/++TrnnHP8nsD61FNPqaKiQrfeeqvv2zwdOXLvyM6dO7tcD4B2mH3mGoDucOQJrIG2xx9/3LIsy28sJCTEGjRokHXWWWdZ8+fPtz788MOA+9++fbt1ySWXWIMHD7ZCQ0OtxMRE6/rrr7e++OKLducfPnzYeuyxx6xzzz3XiomJscLCwqyRI0daubm51j/+8Q/Lsixr6tSpVmRkpNXU1BTwuNdee60VFhZmNTQ0+MaCfQLrEXV1dZbL5bJGjx5tRUREWIMGDbKcTqf14osvtpl75AmsS5cubfPev/aaJ7AC3cNmWVz8BAAA5nDPCAAAMIowAgAAjCKMAAAAowgjAADAqC6FkVWrVikpKUmRkZHKyMhQWVlZh/OLioo0duxYDRgwQA6HQ7fccou+//77LhUMAAD6l6DDyKZNm+RyuVRQUKCKigolJycrKytLdXV17c5/6qmntGDBAhUUFGjXrl1as2aNNm3apNtvv/2oiwcAAH1f0F/tzcjI0IQJE7Ry5UpJPz7B0OFwaN68eVqwYEGb+Xl5edq1a5fcbrdv7NZbb9WOHTv01ltvdeqYXq9XX331lU488UTZbLZgygUAAIZYlqUDBw5o+PDhCgkJfP4jqCewtrS0qLy83O+JiyEhIXI6nSotLW13zaRJk7R+/XqVlZUpPT1dn376qbZu3aqZM2cGPE5zc7Oam5t9r7/88suAP2AFAAB6t+rqap188skB3w8qjDQ0NKi1tVVxcXF+43Fxce0+glqS/vCHP6ihoUHnnHOOLMvS4cOHdcMNN3R4maawsFCLFy9uM15dXe37iXIAANC7eTweORwO349vBtLjv02zbds23XPPPXrooYeUkZGhvXv3av78+br77ru1cOHCdtfk5+fL5XL5Xh/5MNHR0YQRAAD6mF+6xSKoMBIbGyu73a7a2lq/8draWsXHx7e7ZuHChZo5c6auv/56SdIZZ5yhpqYmzZkzR3fccUe715AiIiIUERERTGkAAKCPCurbNOHh4UpNTfW7GdXr9crtdiszM7PdNQcPHmwTOOx2u6Qfb2wBAADHt6Av07hcLs2aNUtpaWlKT09XUVGRmpqalJubK0nKyclRYmKiCgsLJUlTp07V8uXLddZZZ/ku0yxcuFBTp071hRIAAHD8CjqMZGdnq76+XosWLVJNTY1SUlJUUlLiu6m1qqrK70zInXfeKZvNpjvvvFNffvmlhg4dqqlTp+rPf/5z930KAAAMaG1t1Q8//GC6DGPCwsK65cRC0M8ZMcHj8SgmJkaNjY3cwAoAMM6yLNXU1Gj//v2mSzFu0KBBio+Pb/cm1c7+/e7xb9MAANDfHAkiw4YNU1RU1HH5QE7LsnTw4EHfE9gTEhK6vC/CCAAAQWhtbfUFkZNOOsl0OUYNGDBAklRXV6dhw4Z1+ZINv9oLAEAQjtwjEhUVZbiS3uFIH47m3hnCCAAAXXA8XpppT3f0gTACAACMIowAAICAkpKSVFRU1KPH4AZWAAC6ybG8dNMHnszRaZwZAQAARhFGAAA4Tpx33nnKy8tTXl6eYmJiFBsbq4ULF/rOstTV1Wnq1KkaMGCARo0apQ0bNhyTurhMAwDAcWTdunW67rrrVFZWpnfeeUdz5szRiBEjNHv2bF177bX66quv9MYbbygsLEw33XST76FmPem4CiO97WtY/el6HwCgb3A4HFqxYoVsNpvGjh2r999/XytWrNDkyZP1yiuvqKysTBMmTJAkrVmzRqeddlqP18RlGgAAjiMTJ070+z/nmZmZ2rNnj3bt2qXQ0FClpqb63hs3bpwGDRrU4zURRgAAgFGEEQAAjiM7duzwe719+3aNGTNG48aN0+HDh1VeXu57r7Ky8pj8MjFhBACA40hVVZVcLpcqKyv19NNP68EHH9T8+fM1duxYXXTRRfqP//gP7dixQ+Xl5br++ut9P4bXkwgjAAAcR3JycnTo0CGlp6dr7ty5mj9/vubMmSNJevzxxzV8+HBNnjxZl19+uebMmaNhw4b1eE3H1bdpAADoSX3hW5JhYWEqKirS6tWr27wXHx+vl19+2W9s5syZPV4TZ0YAAIBRhBEAAGAUl2kAADhObNu2zXQJ7eLMCAAAMIowAgAAjCKMAADQBV6v13QJvUJ39IF7RgAACEJ4eLhCQkL01VdfaejQoQoPD+91P8R6LFiWpZaWFtXX1yskJETh4eFd3hdhBACAIISEhGjUqFH6+uuv9dVXX5kux7ioqCiNGDFCISFdv9hCGAEAIEjh4eEaMWKEDh8+rNbWVtPlGGO32xUaGnrUZ4YIIwAAdIHNZlNYWJjCwsJMl9LncQMrAAAwijMjkKRed/NVb/p9B3oTWG/qTW/qi0RvOkJvAjtee8OZEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAY1aUwsmrVKiUlJSkyMlIZGRkqKysLOPe8886TzWZrs02ZMqXLRQMAgP4j6DCyadMmuVwuFRQUqKKiQsnJycrKylJdXV2787ds2aKvv/7at33wwQey2+266qqrjrp4AADQ9wUdRpYvX67Zs2crNzdX48ePV3FxsaKiorR27dp25w8ZMkTx8fG+7fXXX1dUVBRhBAAASAoyjLS0tKi8vFxOp/OnHYSEyOl0qrS0tFP7WLNmjaZPn64TTjgh4Jzm5mZ5PB6/DQAA9E9BhZGGhga1trYqLi7ObzwuLk41NTW/uL6srEwffPCBrr/++g7nFRYWKiYmxrc5HI5gygQAAH3IMf02zZo1a3TGGWcoPT29w3n5+flqbGz0bdXV1ceoQgAAcKwF9UN5sbGxstvtqq2t9Ruvra1VfHx8h2ubmpq0ceNGLVmy5BePExERoYiIiGBKAwAAfVRQZ0bCw8OVmpoqt9vtG/N6vXK73crMzOxw7ebNm9Xc3Kxrrrmma5UCAIB+KagzI5Lkcrk0a9YspaWlKT09XUVFRWpqalJubq4kKScnR4mJiSosLPRbt2bNGk2bNk0nnXRS91QOAAD6haDDSHZ2turr67Vo0SLV1NQoJSVFJSUlvptaq6qqFBLif8KlsrJSb731ll577bXuqRoAAPQbNsuyLNNF/BKPx6OYmBg1NjYqOjq6y/ux2WzdWNXR602tpzeB0ZvAelNvelNfJHrTEXoTWH/rTWf/fvPbNAAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIzqUhhZtWqVkpKSFBkZqYyMDJWVlXU4f//+/Zo7d64SEhIUERGhU089VVu3bu1SwQAAoH8JDXbBpk2b5HK5VFxcrIyMDBUVFSkrK0uVlZUaNmxYm/ktLS264IILNGzYMD377LNKTEzU559/rkGDBnVH/QAAoI+zWZZlBbMgIyNDEyZM0MqVKyVJXq9XDodD8+bN04IFC9rMLy4u1tKlS7V7926FhYV1qUiPx6OYmBg1NjYqOjq6S/uQJJvN1uW1PSHI1vcoehMYvQmsN/WmN/VFojcdoTeB9bfedPbvd1CXaVpaWlReXi6n0/nTDkJC5HQ6VVpa2u6aF198UZmZmZo7d67i4uJ0+umn65577lFra2vA4zQ3N8vj8fhtAACgfwoqjDQ0NKi1tVVxcXF+43FxcaqpqWl3zaeffqpnn31Wra2t2rp1qxYuXKhly5bpv/7rvwIep7CwUDExMb7N4XAEUyYAAOhDevzbNF6vV8OGDdMjjzyi1NRUZWdn64477lBxcXHANfn5+WpsbPRt1dXVPV0mAAAwJKgbWGNjY2W321VbW+s3Xltbq/j4+HbXJCQkKCwsTHa73Td22mmnqaamRi0tLQoPD2+zJiIiQhEREcGUBgAA+qigzoyEh4crNTVVbrfbN+b1euV2u5WZmdnumrPPPlt79+6V1+v1jX388cdKSEhoN4gAAIDjS9CXaVwulx599FGtW7dOu3bt0o033qimpibl5uZKknJycpSfn++bf+ONN+qbb77R/Pnz9fHHH+uvf/2r7rnnHs2dO7f7PgUAAOizgn7OSHZ2turr67Vo0SLV1NQoJSVFJSUlvptaq6qqFBLyU8ZxOBx69dVXdcstt+jMM89UYmKi5s+frz/96U/d9ykAAECfFfRzRkzgOSM9j94ERm8C60296U19kehNR+hNYP2tNz3ynBEAAIDuRhgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUV0KI6tWrVJSUpIiIyOVkZGhsrKygHOfeOIJ2Ww2vy0yMrLLBQMAgP4l6DCyadMmuVwuFRQUqKKiQsnJycrKylJdXV3ANdHR0fr666992+eff35URQMAgP4j6DCyfPlyzZ49W7m5uRo/fryKi4sVFRWltWvXBlxjs9kUHx/v2+Li4o6qaAAA0H8EFUZaWlpUXl4up9P50w5CQuR0OlVaWhpw3XfffaeRI0fK4XDo0ksv1YcfftjhcZqbm+XxePw2AADQPwUVRhoaGtTa2trmzEZcXJxqamraXTN27FitXbtWL7zwgtavXy+v16tJkybpiy++CHicwsJCxcTE+DaHwxFMmQAAoA/p8W/TZGZmKicnRykpKZo8ebK2bNmioUOH6uGHHw64Jj8/X42Njb6turq6p8sEAACGhAYzOTY2Vna7XbW1tX7jtbW1io+P79Q+wsLCdNZZZ2nv3r0B50RERCgiIiKY0gAAQB8V1JmR8PBwpaamyu12+8a8Xq/cbrcyMzM7tY/W1la9//77SkhICK5SAADQLwV1ZkSSXC6XZs2apbS0NKWnp6uoqEhNTU3Kzc2VJOXk5CgxMVGFhYWSpCVLlmjixIkaPXq09u/fr6VLl+rzzz/X9ddf372fBAAA9ElBh5Hs7GzV19dr0aJFqqmpUUpKikpKSnw3tVZVVSkk5KcTLt9++61mz56tmpoaDR48WKmpqfr73/+u8ePHd9+nAAAAfZbNsizLdBG/xOPxKCYmRo2NjYqOju7yfmw2WzdWdfR6U+vpTWD0JrDe1Jve1BeJ3nSE3gTW33rT2b/f/DYNAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAo7oURlatWqWkpCRFRkYqIyNDZWVlnVq3ceNG2Ww2TZs2rSuHBQAA/VDQYWTTpk1yuVwqKChQRUWFkpOTlZWVpbq6ug7X7du3T7fddpvOPffcLhcLAAD6n6DDyPLlyzV79mzl5uZq/PjxKi4uVlRUlNauXRtwTWtrq66++motXrxYp5xyylEVDAAA+pegwkhLS4vKy8vldDp/2kFIiJxOp0pLSwOuW7JkiYYNG6brrruu65UCAIB+KTSYyQ0NDWptbVVcXJzfeFxcnHbv3t3umrfeektr1qzRzp07O32c5uZmNTc3+157PJ5gygQAAH1Ij36b5sCBA5o5c6YeffRRxcbGdnpdYWGhYmJifJvD4ejBKgEAgElBnRmJjY2V3W5XbW2t33htba3i4+PbzP/kk0+0b98+TZ061Tfm9Xp/PHBoqCorK/WrX/2qzbr8/Hy5XC7fa4/HQyABAKCfCiqMhIeHKzU1VW632/f1XK/XK7fbrby8vDbzx40bp/fff99v7M4779SBAwf0wAMPBAwYERERioiICKY0AADQRwUVRiTJ5XJp1qxZSktLU3p6uoqKitTU1KTc3FxJUk5OjhITE1VYWKjIyEidfvrpfusHDRokSW3GAQDA8SnoMJKdna36+notWrRINTU1SklJUUlJie+m1qqqKoWE8GBXAADQOTbLsizTRfwSj8ejmJgYNTY2Kjo6usv7sdls3VjV0etNrac3gdGbwHpTb3pTXyR60xF6E1h/601n/35zCgMAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRXQojq1atUlJSkiIjI5WRkaGysrKAc7ds2aK0tDQNGjRIJ5xwglJSUvTkk092uWAAANC/BB1GNm3aJJfLpYKCAlVUVCg5OVlZWVmqq6trd/6QIUN0xx13qLS0VO+9955yc3OVm5urV1999aiLBwAAfZ/NsiwrmAUZGRmaMGGCVq5cKUnyer1yOByaN2+eFixY0Kl9/PrXv9aUKVN09913d2q+x+NRTEyMGhsbFR0dHUy5fmw2W5fX9oQgW9+j6E1g9Caw3tSb3tQXid50hN4E1t9609m/30GdGWlpaVF5ebmcTudPOwgJkdPpVGlp6S+utyxLbrdblZWV+s1vfhPMoQEAQD8VGszkhoYGtba2Ki4uzm88Li5Ou3fvDriusbFRiYmJam5ult1u10MPPaQLLrgg4Pzm5mY1Nzf7Xns8nmDKBAAAfUhQYaSrTjzxRO3cuVPfffed3G63XC6XTjnlFJ133nntzi8sLNTixYuPRWkAAMCwoMJIbGys7Ha7amtr/cZra2sVHx8fcF1ISIhGjx4tSUpJSdGuXbtUWFgYMIzk5+fL5XL5Xns8HjkcjmBKBQAAfURQ94yEh4crNTVVbrfbN+b1euV2u5WZmdnp/Xi9Xr/LMD8XERGh6Ohovw0AAPRPQV+mcblcmjVrltLS0pSenq6ioiI1NTUpNzdXkpSTk6PExEQVFhZK+vGSS1pamn71q1+publZW7du1ZNPPqnVq1d37ycBAAB9UtBhJDs7W/X19Vq0aJFqamqUkpKikpIS302tVVVVCgn56YRLU1OT/vjHP+qLL77QgAEDNG7cOK1fv17Z2dnd9ykAAECfFfRzRkzgOSM9j94ERm8C60296U19kehNR+hNYP2tNz3ynBEAAIDuRhgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUYQRAABgFGEEAAAYRRgBAABGEUYAAIBRhBEAAGAUYQQAABhFGAEAAEYRRgAAgFGEEQAAYBRhBAAAGEUYAQAARhFGAACAUV0KI6tWrVJSUpIiIyOVkZGhsrKygHMfffRRnXvuuRo8eLAGDx4sp9PZ4XwAAHB8CTqMbNq0SS6XSwUFBaqoqFBycrKysrJUV1fX7vxt27ZpxowZeuONN1RaWiqHw6ELL7xQX3755VEXDwAA+j6bZVlWMAsyMjI0YcIErVy5UpLk9XrlcDg0b948LViw4BfXt7a2avDgwVq5cqVycnI6dUyPx6OYmBg1NjYqOjo6mHL92Gy2Lq/tCUG2vkfRm8DoTWC9qTe9qS8SvekIvQmsv/Wms3+/gzoz0tLSovLycjmdzp92EBIip9Op0tLSTu3j4MGD+uGHHzRkyJBgDg0AAPqp0GAmNzQ0qLW1VXFxcX7jcXFx2r17d6f28ac//UnDhw/3CzQ/19zcrObmZt9rj8cTTJkAAKAPOabfprn33nu1ceNGPf/884qMjAw4r7CwUDExMb7N4XAcwyoBAMCxFFQYiY2Nld1uV21trd94bW2t4uPjO1x7//33695779Vrr72mM888s8O5+fn5amxs9G3V1dXBlAkAAPqQoMJIeHi4UlNT5Xa7fWNer1dut1uZmZkB1/33f/+37r77bpWUlCgtLe0XjxMREaHo6Gi/DQAA9E9B3TMiSS6XS7NmzVJaWprS09NVVFSkpqYm5ebmSpJycnKUmJiowsJCSdJ9992nRYsW6amnnlJSUpJqamokSQMHDtTAgQO78aMAAIC+KOgwkp2drfr6ei1atEg1NTVKSUlRSUmJ76bWqqoqhYT8dMJl9erVamlp0ZVXXum3n4KCAt11111HVz0AAOjzgn7OiAk8Z6Tn0ZvA6E1gvak3vakvEr3pCL0JrL/1pkeeMwIAANDdCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwqkthZNWqVUpKSlJkZKQyMjJUVlYWcO6HH36oK664QklJSbLZbCoqKupqrQAAoB8KOoxs2rRJLpdLBQUFqqioUHJysrKyslRXV9fu/IMHD+qUU07Rvffeq/j4+KMuGAAA9C9Bh5Hly5dr9uzZys3N1fjx41VcXKyoqCitXbu23fkTJkzQ0qVLNX36dEVERBx1wQAAoH8JKoy0tLSovLxcTqfzpx2EhMjpdKq0tLTbiwMAAP1faDCTGxoa1Nraqri4OL/xuLg47d69u9uKam5uVnNzs++1x+Pptn0DAIDepVd+m6awsFAxMTG+zeFwmC4JAAD0kKDCSGxsrOx2u2pra/3Ga2tru/Xm1Pz8fDU2Nvq26urqbts3AADoXYIKI+Hh4UpNTZXb7faNeb1eud1uZWZmdltRERERio6O9tsAAED/FNQ9I5Lkcrk0a9YspaWlKT09XUVFRWpqalJubq4kKScnR4mJiSosLJT0402vH330ke+fv/zyS+3cuVMDBw7U6NGju/GjAACAvijoMJKdna36+notWrRINTU1SklJUUlJie+m1qqqKoWE/HTC5auvvtJZZ53le33//ffr/vvv1+TJk7Vt27aj/wQAAKBPs1mWZZku4pd4PB7FxMSosbHxqC7Z2Gy2bqzq6PWm1tObwOhNYL2pN72pLxK96Qi9Cay/9aazf7975bdpAADA8YMwAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMIowAgAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKO6FEZWrVqlpKQkRUZGKiMjQ2VlZR3O37x5s8aNG6fIyEidccYZ2rp1a5eKBQAA/U/QYWTTpk1yuVwqKChQRUWFkpOTlZWVpbq6unbn//3vf9eMGTN03XXX6R//+IemTZumadOm6YMPPjjq4gEAQN9nsyzLCmZBRkaGJkyYoJUrV0qSvF6vHA6H5s2bpwULFrSZn52draamJr388su+sYkTJyolJUXFxcWdOqbH41FMTIwaGxsVHR0dTLl+bDZbl9f2hCBb36PoTWD0JrDe1Jve1BeJ3nSE3gTW33rT2b/fQZ0ZaWlpUXl5uZxO5087CAmR0+lUaWlpu2tKS0v95ktSVlZWwPkAAOD4EhrM5IaGBrW2tiouLs5vPC4uTrt37253TU1NTbvza2pqAh6nublZzc3NvteNjY2SfkxY/Ul/+zzdid4ERm/aR18CozeB0ZvAuqM3R/bxS2dZggojx0phYaEWL17cZtzhcBiopufExMSYLqHXojeB0Zv20ZfA6E1g9Caw7uzNgQMHOtxfUGEkNjZWdrtdtbW1fuO1tbWKj49vd018fHxQ8yUpPz9fLpfL99rr9eqbb77RSSedZPx6msfjkcPhUHV19VHdv9If0ZvA6E1g9CYwetM++hJYb+uNZVk6cOCAhg8f3uG8oMJIeHi4UlNT5Xa7NW3aNEk/BgW32628vLx212RmZsrtduvmm2/2jb3++uvKzMwMeJyIiAhFRET4jQ0aNCiYUntcdHR0r/gPujeiN4HRm8DoTWD0pn30JbDe1JvOnGEJ+jKNy+XSrFmzlJaWpvT0dBUVFampqUm5ubmSpJycHCUmJqqwsFCSNH/+fE2ePFnLli3TlClTtHHjRr3zzjt65JFHgj00AADoh4IOI9nZ2aqvr9eiRYtUU1OjlJQUlZSU+G5SraqqUkjIT1/SmTRpkp566indeeeduv322zVmzBj95S9/0emnn959nwIAAPRZXbqBNS8vL+BlmW3btrUZu+qqq3TVVVd15VC9TkREhAoKCtpcRgK96Qi9CYzeBEZv2kdfAuurvQn6oWcAAADdiR/KAwAARhFGAACAUYQRAABgFGEEAHopbunD8aJXPg6+N2loaNDatWtVWlrq+z2d+Ph4TZo0Sddee62GDh1quEIA/VVERITeffddnXbaaaZLAXoU36bpwNtvv62srCxFRUXJ6XT6nqVSW1srt9utgwcP6tVXX1VaWprhStHbHDp0SOXl5RoyZIjGjx/v997333+vZ555Rjk5OYaqM2vXrl3avn27MjMzNW7cOO3evVsPPPCAmpubdc011+jf/u3fTJd4zP3rz1/8qwceeEDXXHONTjrpJEnS8uXLj2VZvVJTU5OeeeYZ7d27VwkJCZoxY4avP+i7CCMdmDhxopKTk1VcXNzmN3Esy9INN9yg9957T6WlpYYq7N2qq6tVUFCgtWvXmi7lmPr444914YUXqqqqSjabTeecc442btyohIQEST+G2eHDh6u1tdVwpcdeSUmJLr30Ug0cOFAHDx7U888/r5ycHCUnJ8vr9erNN9/Ua6+9dtwFkpCQECUnJ7f52Ys333xTaWlpOuGEE2Sz2fS3v/3NTIEGjR8/Xm+99ZaGDBmi6upq/eY3v9G3336rU089VZ988olCQ0O1fft2jRo1ynSpx1xFRYUGDx7s++xPPvmkiouLVVVVpZEjRyovL0/Tp083XGUnWQgoMjLS2rVrV8D3d+3aZUVGRh7DivqWnTt3WiEhIabLOOamTZtmTZkyxaqvr7f27NljTZkyxRo1apT1+eefW5ZlWTU1NcdlXyzLsjIzM6077rjDsizLevrpp63Bgwdbt99+u+/9BQsWWBdccIGp8owpLCy0Ro0aZbndbr/x0NBQ68MPPzRUVe9gs9ms2tpay7Is6+qrr7YmTZpk7d+/37Isyzpw4IDldDqtGTNmmCzRmDPPPNN6/fXXLcuyrEcffdQaMGCAddNNN1mrV6+2br75ZmvgwIHWmjVrDFfZOYSRDiQlJVnr1q0L+P66deuskSNHHruCepkXXnihw23FihXH5R/dYcOGWe+9957vtdfrtW644QZrxIgR1ieffHJch5Ho6Ghrz549lmVZVmtrqxUaGmpVVFT43n///fetuLg4U+UZVVZWZp166qnWrbfearW0tFiWRRixLP8wcsopp1ivvfaa3/v/93//ZzkcDhOlGTdgwABr3759lmVZ1llnnWU98sgjfu9v2LDBGj9+vInSgsYNrB247bbbNGfOHJWXl+v8889vc8/Io48+qvvvv99wleZMmzZNNputwzv+f35563hw6NAhhYb+9K+WzWbT6tWrlZeXp8mTJ+upp54yWJ15R/47ERISosjISL9f9DzxxBPV2NhoqjSjJkyYoPLycs2dO1dpaWnasGHDcfnvT3uO9OH777/3Xe48IjExUfX19SbKMi4qKkoNDQ0aOXKkvvzyS6Wnp/u9n5GRoc8++8xQdcHhq70dmDt3rtatW6cdO3boiiuuUGZmpjIzM3XFFVdox44deuKJJ/THP/7RdJnGJCQkaMuWLfJ6ve1uFRUVpks0Yty4cXrnnXfajK9cuVKXXnqpfve73xmoqndISkrSnj17fK9LS0s1YsQI3+uqqqo2f2yOJwMHDtS6deuUn58vp9N5XN5X1J7zzz9fv/71r+XxeFRZWen33ueff37c3sB68cUXa/Xq1ZKkyZMn69lnn/V7/5lnntHo0aNNlBY0zoz8guzsbGVnZ+uHH35QQ0ODJCk2NlZhYWGGKzMvNTVV5eXluvTSS9t9/5fOmvRXl112mZ5++mnNnDmzzXsrV66U1+tVcXGxgcrMu/HGG/3+wP7817tfeeWV4+7m1fZMnz5d55xzjsrLyzVy5EjT5RhVUFDg93rgwIF+r1966SWde+65x7KkXuO+++7T2WefrcmTJystLU3Lli3Ttm3bdNppp6myslLbt2/X888/b7rMTuHbNOiy//3f/1VTU5Muuuiidt9vamrSO++8o8mTJx/jygDg+LB//37de++9eumll/Tpp5/K6/UqISFBZ599tm655ZY+8+gJwggAADCKe0YAAIBRhBEAAGAUYQQAABhFGAHQY8477zzdfPPNAd9PSkpSUVHRMasHQO/EV3sBGPP222/rhBNOMF0GAMMIIwCMGTp0qOkSAPQCXKYB0KMOHz6svLw8xcTEKDY2VgsXLvQ9DO/nl2lsNpsee+wxXXbZZYqKitKYMWP04osvGqocwLFCGAHQo9atW6fQ0FCVlZXpgQce0PLly/XYY48FnL948WL9/ve/13vvvad///d/19VXX61vvvnmGFYM4FgjjADoUQ6HQytWrNDYsWN19dVXa968eVqxYkXA+ddee61mzJih0aNH65577tF3332nsrKyY1gxgGONMAKgR02cONHv12czMzO1Z8+egD8Cd+aZZ/r++YQTTlB0dLTq6up6vE4A5hBGAPQqP/8RSpvNJq/Xa6gaAMcCYQRAj9qxY4ff6+3bt2vMmDGy2+2GKgLQ2xBGAPSoqqoquVwuVVZW6umnn9aDDz6o+fPnmy4LQC/Cc0YA9KicnBwdOnRI6enpstvtmj9/vubMmWO6LAC9iM068oV/AAAAA7hMAwAAjCKMAAAAowgjAADAKMIIAAAwijACAACMIowAAACjCCMAAMAowggAADCKMAIAAIwijAAAAKMIIwAAwCjCCAAAMOr/ATvhGdgIyv48AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result.plot(feature_name=\"EDUCATION\", override_feature_type=result.format.KEY_CATEGORICAL)" ] }, { "cell_type": "code", "execution_count": 26, "id": "146130b2-74df-4af5-a63f-d17363a05462", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAHGCAYAAABXQNCQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAu6UlEQVR4nO3df1iUdb7/8dcwCAjJqCAghGK/tB8khUBkZ8ONI5Zb2ZZJV6ax/mhdNY22DXZPuP2kttaoZHWtyTxF6bHsbD/MLM7mxh5yXKiTnC2yLYNV+aElo6hgzHz/OJfTNV9EGQTm4/h8XNfnupjP/fl85n3fl9u89r7vucfidrvdAgAAMFiQvwsAAAA4EQILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQVAr3nhhRdksVg8LSwsTOedd54WLFigxsZGr7EbNmyQxWJRfHy8XC6Xp//RRx+VxWLRu+++e8z3uOaaa2Sz2bRr165u1fT6668rJydH8fHxCg0N1ZlnnqmbbrpJNTU1Pd9RAP0u2N8FAAg8DzzwgEaNGqXDhw+roqJCy5cv14YNG1RTU6Pw8HBJUllZmZKSkrRjxw7913/9l7KzsyVJd999t15++WX94he/UE1NjQYOHOhZd926dXrnnXdUWlqq+Pj4btWybds2DRkyRIsWLVJ0dLQaGhr0/PPPKz09XZWVlRo7dmzvHwAAvc8NAL1k1apVbknurVu3evXn5+e7Jblffvllt9vtdh84cMAdERHhfvrpp92XXHKJ+/bbb/caX1lZ6Q4KCnIXFhZ6+pxOpzs+Pt592WWXuTs6Ok6qzoaGBndwcLD7jjvuOKl1APQfLgkB6HM//vGPJUlff/21pP+7THPo0CFNnTpVubm5Wr9+vQ4fPuwZf9lll+nnP/+5nnjiCf3973+XJP3bv/2bmpqatHLlSgUFndx/umJiYhQeHq59+/ad1DoA+g+BBUCf+8c//iFJioqKkvR/l4MmTJiguLg45ebmav/+/XrzzTe95hQXF2vYsGG64447VFVVpdLSUv3yl79UcnJyj2rYt2+fmpubtW3bNs2ePVtOp1NXXXXVye0YgH5jcbvdbn8XASAwvPDCC8rLy9P777+vsWPH6vDhw/rrX/+q+fPn6+DBg9q+fbsGDBighIQELV++XLNnz5YkjR8/XsOGDdN//ud/eq332muv6aabbtLQoUM1ePDgTve0+GLMmDGqra2VJJ1xxhlavHix7r///pM+WwOgf3DTLYBed/QG2qNGjhypsrIyJSQk6Omnn1ZQUJBuvPFGz/ZbbrlFd999t7777jsNGTLE03/jjTfqmmuu0YYNG1RWVtbjsCJJq1atktPp1FdffaVVq1bp0KFD6ujoILAApwgCC4BeV1paqvPOO0/BwcGKjY3V6NGjPcHgpZdeUnp6uvbu3au9e/dKki655BK1t7dr3bp1mjt3rtdaaWlp2rBhg8aNG3dSNWVmZnr+zs3N1fnnny9JeuKJJ05qXQD9g8ACoNelp6cfM2Bs375dW7dulSSde+65nbaXlZV1Cix9YciQIfrxj3+ssrIyAgtwiiCwAOg3ZWVlGjBggF588UVZrVavbRUVFXr66adVV1enESNG9Hkthw4dUktLS5+/D4DeQWAB0G/Kysr0L//yL5o2bVqnbZmZmXr66af1yiuv6N577+2192xqalJMTIxX344dO1ReXn7Sl5kA9B8CC4B+sWXLFn355ZdasGDBMbcnJCTo0ksvVVlZWa8GluTkZF111VVKSUnRkCFDtH37dtntdh05ckSPPvpor70PgL7F7fEA+kVZWZkk6dprr+1yzLXXXqtt27bp008/7bX3nTdvnrZv365HH31Uv/jFL1RWVqaJEyfK4XDo8ssv77X3AdC3eA4LAAAwHmdYAACA8biHBcAp6dtvv1V7e3uX261Wq4YNG9aPFQHoS1wSAnBKysrK0ubNm7vcPnLkSO3YsaP/CgLQpwgsAE5JVVVV+u6777rcPnDgQI0fP74fKwLQlwgsAADAeAFzD4vL5dKuXbs0aNAgWSwWf5cDAAC6we12a//+/YqPjz/uj5EGTGDZtWuXEhMT/V0GAADogfr6ep155pldbg+YwDJo0CBJ/7fDkZGRfq4GAAB0h9PpVGJioudzvCsBE1iOXgaKjIwksAAAcIo50e0cPDgOAAAYj8ACAACMR2ABAADGC5h7WAAAMFFHR4eOHDni7zL8ZsCAAbJarSe9DoEFAIA+4Ha71dDQoH379vm7FL8bPHiw4uLiTuo5aQQWAAD6wNGwEhMTo/Dw8NPyoaZut1sHDx5UU1OTJGn48OE9XovAAgBAL+vo6PCElaioKH+X41cDBw6UJDU1NSkmJqbHl4e46RYAgF529J6V8PBwP1dihqPH4WTu5SGwAADQR07Hy0DH0hvHgcACAACMR2ABAADGI7AAAICTkpSUpJKSkj59DwILAAAwHoEFAAAYj+ewAADQx44+QM0ffH1oXVZWli666CJJ0osvvqgBAwZo3rx5euCBB2SxWNTU1KRZs2bp/fffV1xcnB566KG+Kt1Lj86wlJaWKikpSWFhYcrIyJDD4ehybFZWliwWS6c2efJkr3GfffaZrrvuOtlsNkVERCgtLU11dXU9KQ8AAKMcPHhQZ5xxhl9aT4LS6tWrFRwcLIfDoaeeekpLly7Vc889J0m6/fbbVV9frz//+c969dVX9Yc//MHzJNu+5PMZlrVr1yo/P18rVqxQRkaGSkpKlJOTo9raWsXExHQav379erW3t3te7927V2PHjtXUqVM9ff/4xz90xRVXaNasWbr//vsVGRmp//3f/1VYWFgPdwsAAPRUYmKinnzySVksFo0ePVrbtm3Tk08+qSuvvFLvvPOOHA6H0tLSJEl2u13nn39+n9fkc2BZunSp5syZo7y8PEnSihUr9Pbbb+v5559XQUFBp/FDhw71er1mzRqFh4d7BZbf/OY3uuaaa/S73/3O03f22Wf7WhoAAEYKDw/XgQMH/Pbevrrsssu8LiNlZmbq97//vT777DMFBwcrNTXVs23MmDEaPHhwb5R6XD4Flvb2dlVVVamwsNDTFxQUpOzsbFVWVnZrDbvdrtzcXEVEREiSXC6X3n77bf3qV79STk6OPv74Y40aNUqFhYWaMmVKl+u0tbWpra3N89rpdPqyKwAA9BuLxeL53EPP+HQPy549e9TR0aHY2Fiv/tjYWDU0NJxwvsPhUE1NjWbPnu3pa2pq0oEDB/Too49q0qRJ2rRpk2644Qb99Kc/1ebNm7tcq7i4WDabzdMSExN92RUAANCFLVu2eL3+6KOPdO6552rMmDH6/vvvVVVV5dlWW1urffv29XlN/fq1ZrvdruTkZKWnp3v6XC6XJOn666/XXXfdpZSUFBUUFOgnP/mJVqxY0eVahYWFamlp8bT6+vo+rx8AgNNBXV2d8vPzVVtbq1deeUXPPPOMFi1apNGjR2vSpEm64447tGXLFlVVVWn27NmeX2TuSz4FlujoaFmtVjU2Nnr1NzY2Ki4u7rhzW1tbtWbNGs2aNavTmsHBwbrgggu8+s8///zjfksoNDRUkZGRXg0AAJy8GTNm6NChQ0pPT9f8+fO1aNEizZ07V5K0atUqxcfH68orr9RPf/pTzZ0795hfuultPt3DEhISotTUVJWXl3vuL3G5XCovL9eCBQuOO3fdunVqa2vT9OnTO62Zlpam2tpar/4vvvhCI0eO9KU8AADQCwYMGKCSkhItX76807a4uDi99dZbXn233XZbn9fk87eE8vPzNXPmTI0bN07p6ekqKSlRa2ur51tDM2bMUEJCgoqLi73m2e12TZkyRVFRUZ3WvOeeezRt2jT96Ec/0oQJE7Rx40a9+eab+uCDD3q2VwAAIKD4HFimTZum5uZmFRUVqaGhQSkpKdq4caPnRty6ujoFBXlfaaqtrVVFRYU2bdp0zDVvuOEGrVixQsXFxbrzzjs1evRovfbaa7riiit6sEsAACDQWNxut9vfRfQGp9Mpm82mlpYW7mcBAPjV4cOH9fXXX2vUqFE8BFXHPx7d/fzmxw8BAOgjAXJO4KT1xnEgsAAA0MsGDBggSX77wUPTHD0OR49LT/BrzQAA9DKr1arBgwd7fhTQ119MDhRHf6W6qalJgwcPltVq7fFaBBYAAPrA0eeT9ccvGZtu8ODBJ3xe24kQWAAA6AMWi0XDhw9XTEyMjhw54u9y/GbAgAEndWblKAILAAB9yGq19soH9umOm24BAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIzXo8BSWlqqpKQkhYWFKSMjQw6Ho8uxWVlZslgsndrkyZM9Y26//fZO2ydNmtST0gAAQAAK9nXC2rVrlZ+frxUrVigjI0MlJSXKyclRbW2tYmJiOo1fv3692tvbPa/37t2rsWPHaurUqV7jJk2apFWrVnleh4aG+loaAAAIUD4HlqVLl2rOnDnKy8uTJK1YsUJvv/22nn/+eRUUFHQaP3ToUK/Xa9asUXh4eKfAEhoaqri4uG7X0dbWpra2Ns9rp9Ppy24AAIBTiE+XhNrb21VVVaXs7OwfFggKUnZ2tiorK7u1ht1uV25uriIiIrz6P/jgA8XExGj06NGaN2+e9u7de9x1iouLZbPZPC0xMdGXXQEAAKcQnwLLnj171NHRodjYWK/+2NhYNTQ0nHC+w+FQTU2NZs+e7dU/adIk/fu//7vKy8v12GOPafPmzbr66qvV0dHR5VqFhYVqaWnxtPr6el92BQAAnEJ8viR0Mux2u5KTk5Wenu7Vn5ub6/k7OTlZF198sc4++2x98MEHuuqqq465VmhoKPe5AABwmvDpDEt0dLSsVqsaGxu9+hsbG094/0lra6vWrFmjWbNmnfB9zjrrLEVHR+vLL7/0pTwAABCgfAosISEhSk1NVXl5uafP5XKpvLxcmZmZx527bt06tbW1afr06Sd8n3/+85/au3evhg8f7kt5AAAgQPn8HJb8/Hw9++yzWr16tT777DPNmzdPra2tnm8NzZgxQ4WFhZ3m2e12TZkyRVFRUV79Bw4c0D333KOPPvpIO3bsUHl5ua6//nqdc845ysnJ6eFuAQCAQOLzPSzTpk1Tc3OzioqK1NDQoJSUFG3cuNFzI25dXZ2CgrxzUG1trSoqKrRp06ZO61mtVn366adavXq19u3bp/j4eE2cOFEPPvgg96gAAABJksXtdrv9XURvcDqdstlsamlpUWRkpL/LAQAA3dDdz29+SwgAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxutRYCktLVVSUpLCwsKUkZEhh8PR5disrCxZLJZObfLkyccc//Of/1wWi0UlJSU9KQ0AAAQgnwPL2rVrlZ+fryVLlqi6ulpjx45VTk6Ompqajjl+/fr12r17t6fV1NTIarVq6tSpnca+/vrr+uijjxQfH+/7ngAAgIDlc2BZunSp5syZo7y8PF1wwQVasWKFwsPD9fzzzx9z/NChQxUXF+dp7733nsLDwzsFlp07d2rhwoUqKyvTgAEDTlhHW1ubnE6nVwMAAIHJp8DS3t6uqqoqZWdn/7BAUJCys7NVWVnZrTXsdrtyc3MVERHh6XO5XLrtttt0zz336MILL+zWOsXFxbLZbJ6WmJjoy64AAIBTiE+BZc+ePero6FBsbKxXf2xsrBoaGk443+FwqKamRrNnz/bqf+yxxxQcHKw777yz27UUFhaqpaXF0+rr67s9FwAAnFqC+/PN7Ha7kpOTlZ6e7umrqqrSU089perqalkslm6vFRoaqtDQ0L4oEwAAGManMyzR0dGyWq1qbGz06m9sbFRcXNxx57a2tmrNmjWaNWuWV/+HH36opqYmjRgxQsHBwQoODtY333yju+++W0lJSb6UBwAAApRPgSUkJESpqakqLy/39LlcLpWXlyszM/O4c9etW6e2tjZNnz7dq/+2227Tp59+qk8++cTT4uPjdc899+jdd9/1pTwAABCgfL4klJ+fr5kzZ2rcuHFKT09XSUmJWltblZeXJ0maMWOGEhISVFxc7DXPbrdrypQpioqK8uqPiorq1DdgwADFxcVp9OjRvpYHAAACkM+BZdq0aWpublZRUZEaGhqUkpKijRs3em7EraurU1CQ94mb2tpaVVRUaNOmTb1TNQAAOK1Y3G63299F9Aan0ymbzaaWlhZFRkb6uxwAANAN3f385reEAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGC8HgWW0tJSJSUlKSwsTBkZGXI4HF2OzcrKksVi6dQmT57sGfPb3/5WY8aMUUREhIYMGaLs7Gxt2bKlJ6UBAIAA5HNgWbt2rfLz87VkyRJVV1dr7NixysnJUVNT0zHHr1+/Xrt37/a0mpoaWa1WTZ061TPmvPPO07Jly7Rt2zZVVFQoKSlJEydOVHNzc8/3DAAABAyL2+12+zIhIyNDaWlpWrZsmSTJ5XIpMTFRCxcuVEFBwQnnl5SUqKioSLt371ZERMQxxzidTtlsNr3//vu66qqrulXX0TktLS2KjIzs/g4BAAC/6e7nt09nWNrb21VVVaXs7OwfFggKUnZ2tiorK7u1ht1uV25ubpdhpb29XStXrpTNZtPYsWO7XKetrU1Op9OrAQCAwORTYNmzZ486OjoUGxvr1R8bG6uGhoYTznc4HKqpqdHs2bM7bXvrrbd0xhlnKCwsTE8++aTee+89RUdHd7lWcXGxbDabpyUmJvqyKwAA4BTSr98SstvtSk5OVnp6eqdtEyZM0CeffKL//u//1qRJk3TzzTd3eV+MJBUWFqqlpcXT6uvr+7J0AADgRz4FlujoaFmtVjU2Nnr1NzY2Ki4u7rhzW1tbtWbNGs2aNeuY2yMiInTOOefosssuk91uV3BwsOx2e5frhYaGKjIy0qsBAIDA5FNgCQkJUWpqqsrLyz19LpdL5eXlyszMPO7cdevWqa2tTdOnT+/We7lcLrW1tflSHgAACFDBvk7Iz8/XzJkzNW7cOKWnp6ukpEStra3Ky8uTJM2YMUMJCQkqLi72mme32zVlyhRFRUV59be2turhhx/Wddddp+HDh2vPnj0qLS3Vzp07vb76DAAATl8+B5Zp06apublZRUVFamhoUEpKijZu3Oi5Ebeurk5BQd4nbmpra1VRUaFNmzZ1Ws9qterzzz/X6tWrtWfPHkVFRSktLU0ffvihLrzwwh7uFgAACCQ+P4fFVDyHBQCAU0+fPIcFAADAHwgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYL9ncBJnO73Tp48KC/ywAAwAjh4eGyWCx+eW8Cy3EcPHhQZ5xxhr/LAADACAcOHFBERIRf3ptLQgAAwHicYTmO8PBwHThwwN9lAABghPDwcL+9N4HlOCwWi99OfQEAgB9wSQgAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwXo8CS2lpqZKSkhQWFqaMjAw5HI4ux2ZlZclisXRqkydPliQdOXJE9957r5KTkxUREaH4+HjNmDFDu3bt6tkeAQCAgONzYFm7dq3y8/O1ZMkSVVdXa+zYscrJyVFTU9Mxx69fv167d+/2tJqaGlmtVk2dOlWSdPDgQVVXV+u+++5TdXW11q9fr9raWl133XUnt2cAACBgWNxut9uXCRkZGUpLS9OyZcskSS6XS4mJiVq4cKEKCgpOOL+kpERFRUXavXu3IiIijjlm69atSk9P1zfffKMRI0Ycc0xbW5va2to8r51OpxITE9XS0qLIyEhfdgkAAPiJ0+mUzWY74ee3T2dY2tvbVVVVpezs7B8WCApSdna2Kisru7WG3W5Xbm5ul2FFklpaWmSxWDR48OAuxxQXF8tms3laYmJit/cDAACcWnwKLHv27FFHR4diY2O9+mNjY9XQ0HDC+Q6HQzU1NZo9e3aXYw4fPqx7771Xt9xyy3GTVmFhoVpaWjytvr6++zsCAABOKcH9+WZ2u13JyclKT08/5vYjR47o5ptvltvt1vLly4+7VmhoqEJDQ/uiTAAAYBifzrBER0fLarWqsbHRq7+xsVFxcXHHndva2qo1a9Zo1qxZx9x+NKx88803eu+997gPBQAAePgUWEJCQpSamqry8nJPn8vlUnl5uTIzM487d926dWpra9P06dM7bTsaVrZv3673339fUVFRvpQFAAACnM+XhPLz8zVz5kyNGzdO6enpKikpUWtrq/Ly8iRJM2bMUEJCgoqLi73m2e12TZkypVMYOXLkiG666SZVV1frrbfeUkdHh+d+mKFDhyokJKSn+wYAAAKEz4Fl2rRpam5uVlFRkRoaGpSSkqKNGzd6bsStq6tTUJD3iZva2lpVVFRo06ZNndbbuXOn3njjDUlSSkqK17Y///nPysrK8rVEAAAQYHx+Doupuvs9bgAAYI4+eQ4LAACAPxBYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4PQospaWlSkpKUlhYmDIyMuRwOLocm5WVJYvF0qlNnjzZM2b9+vWaOHGioqKiZLFY9Mknn/SkLAAAEKB8Dixr165Vfn6+lixZourqao0dO1Y5OTlqamo65vj169dr9+7dnlZTUyOr1aqpU6d6xrS2tuqKK67QY4891vM9AQAAAcvidrvdvkzIyMhQWlqali1bJklyuVxKTEzUwoULVVBQcML5JSUlKioq0u7duxUREeG1bceOHRo1apQ+/vhjpaSk+FKWnE6nbDabWlpaFBkZ6dNcAADgH939/PbpDEt7e7uqqqqUnZ39wwJBQcrOzlZlZWW31rDb7crNze0UVnzV1tYmp9Pp1QAAQGDyKbDs2bNHHR0dio2N9eqPjY1VQ0PDCec7HA7V1NRo9uzZvlV5DMXFxbLZbJ6WmJh40msCAAAz9eu3hOx2u5KTk5Wenn7SaxUWFqqlpcXT6uvre6FCAABgomBfBkdHR8tqtaqxsdGrv7GxUXFxcced29raqjVr1uiBBx7wvcpjCA0NVWhoaK+sBQAAzObTGZaQkBClpqaqvLzc0+dyuVReXq7MzMzjzl23bp3a2to0ffr0nlUKAABOWz6dYZGk/Px8zZw5U+PGjVN6erpKSkrU2tqqvLw8SdKMGTOUkJCg4uJir3l2u11TpkxRVFRUpzW//fZb1dXVadeuXZKk2tpaSVJcXNwJz9wAAIDA53NgmTZtmpqbm1VUVKSGhgalpKRo48aNnhtx6+rqFBTkfeKmtrZWFRUV2rRp0zHXfOONNzyBR5Jyc3MlSUuWLNFvf/tbX0sEAAABxufnsJiK57AAAHDq6ZPnsAAAAPgDgQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjNejwFJaWqqkpCSFhYUpIyNDDoejy7FZWVmyWCyd2uTJkz1j3G63ioqKNHz4cA0cOFDZ2dnavn17T0oDAAAByOfAsnbtWuXn52vJkiWqrq7W2LFjlZOTo6ampmOOX79+vXbv3u1pNTU1slqtmjp1qmfM7373Oz399NNasWKFtmzZooiICOXk5Ojw4cM93zMAABAwLG632+3LhIyMDKWlpWnZsmWSJJfLpcTERC1cuFAFBQUnnF9SUqKioiLt3r1bERERcrvdio+P1913361f/vKXkqSWlhbFxsbqhRdeUG5ubrfqcjqdstlsamlpUWRkpC+7BAAA/KS7n98+nWFpb29XVVWVsrOzf1ggKEjZ2dmqrKzs1hp2u125ubmKiIiQJH399ddqaGjwWtNmsykjI+O4a7a1tcnpdHo1AAAQmHwKLHv27FFHR4diY2O9+mNjY9XQ0HDC+Q6HQzU1NZo9e7an7+g8X9csLi6WzWbztMTERF92BQAAnEL69VtCdrtdycnJSk9PP+m1CgsL1dLS4mn19fW9UCEAADCRT4ElOjpaVqtVjY2NXv2NjY2Ki4s77tzW1latWbNGs2bN8uo/Os/XNUNDQxUZGenVAABAYPIpsISEhCg1NVXl5eWePpfLpfLycmVmZh537rp169TW1qbp06d79Y8aNUpxcXFeazqdTm3ZsuWEawIAgNNDsK8T8vPzNXPmTI0bN07p6ekqKSlRa2ur8vLyJEkzZsxQQkKCiouLvebZ7XZNmTJFUVFRXv0Wi0WLFy/WQw89pHPPPVejRo3Sfffdp/j4eE2ZMqXnewYAAAKGz4Fl2rRpam5uVlFRkRoaGpSSkqKNGzd6bpqtq6tTUJD3iZva2lpVVFRo06ZNx1zzV7/6lVpbWzV37lzt27dPV1xxhTZu3KiwsLAe7BIAAAg0Pj+HxVQ8hwUAgFNPnzyHBQAAwB8ILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGI/AAgAAjEdgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwXo8CS2lpqZKSkhQWFqaMjAw5HI7jjt+3b5/mz5+v4cOHKzQ0VOedd542bNjg2b5//34tXrxYI0eO1MCBA3X55Zdr69atPSkNAAAEIJ8Dy9q1a5Wfn68lS5aourpaY8eOVU5Ojpqamo45vr29Xf/6r/+qHTt26NVXX1Vtba2effZZJSQkeMbMnj1b7733nl588UVt27ZNEydOVHZ2tnbu3NnzPQMAAAHD4na73b5MyMjIUFpampYtWyZJcrlcSkxM1MKFC1VQUNBp/IoVK/T444/r888/14ABAzptP3TokAYNGqQ//elPmjx5sqc/NTVVV199tR566KFj1tHW1qa2tjbPa6fTqcTERLW0tCgyMtKXXQIAAH7idDpls9lO+Pnt0xmW9vZ2VVVVKTs7+4cFgoKUnZ2tysrKY8554403lJmZqfnz5ys2NlYXXXSRHnnkEXV0dEiSvv/+e3V0dCgsLMxr3sCBA1VRUdFlLcXFxbLZbJ6WmJjoy64AAIBTiE+BZc+ePero6FBsbKxXf2xsrBoaGo4556uvvtKrr76qjo4ObdiwQffdd59+//vfe86cDBo0SJmZmXrwwQe1a9cudXR06KWXXlJlZaV2797dZS2FhYVqaWnxtPr6el92BQAAnEKC+/oNXC6XYmJitHLlSlmtVqWmpmrnzp16/PHHtWTJEknSiy++qJ/97GdKSEiQ1WrVpZdeqltuuUVVVVVdrhsaGqrQ0NC+Lh8AABjApzMs0dHRslqtamxs9OpvbGxUXFzcMecMHz5c5513nqxWq6fv/PPPV0NDg9rb2yVJZ599tjZv3qwDBw6ovr5eDodDR44c0VlnneXr/gAAgADkU2AJCQlRamqqysvLPX0ul0vl5eXKzMw85pzx48fryy+/lMvl8vR98cUXGj58uEJCQrzGRkREaPjw4fruu+/07rvv6vrrr/elPAAAEKB8/lpzfn6+nn32Wa1evVqfffaZ5s2bp9bWVuXl5UmSZsyYocLCQs/4efPm6dtvv9WiRYv0xRdf6O2339Yjjzyi+fPne8a8++672rhxo77++mu99957mjBhgsaMGeNZEwAAnN58vodl2rRpam5uVlFRkRoaGpSSkqKNGzd6bsStq6tTUNAPOSgxMVHvvvuu7rrrLl188cVKSEjQokWLdO+993rGtLS0qLCwUP/85z81dOhQ3XjjjXr44YeP+TVoAABw+vH5OSym6u73uAEAgDn65DksAAAA/kBgAQAAxiOwAAAA4xFYAACA8QgsAADAeAQWAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAAGA8AgsAADBesL8L6C1ut1uS5HQ6/VwJAADorqOf20c/x7sSMIFl//79kqTExEQ/VwIAAHy1f/9+2Wy2Lrdb3CeKNKcIl8ulXbt2adCgQbJYLL22rtPpVGJiourr6xUZGdlr68Ibx7n/cKz7B8e5f3Cc+0dfHme32639+/crPj5eQUFd36kSMGdYgoKCdOaZZ/bZ+pGRkfyPoR9wnPsPx7p/cJz7B8e5f/TVcT7emZWjuOkWAAAYj8ACAACMR2A5gdDQUC1ZskShoaH+LiWgcZz7D8e6f3Cc+wfHuX+YcJwD5qZbAAAQuDjDAgAAjEdgAQAAxiOwAAAA4xFYAACA8Qgs3bRjxw7NmjVLo0aN0sCBA3X22WdryZIlam9v93dpAaG0tFRJSUkKCwtTRkaGHA6Hv0sKKMXFxUpLS9OgQYMUExOjKVOmqLa21t9lBbxHH31UFotFixcv9ncpAWfnzp2aPn26oqKiNHDgQCUnJ+tvf/ubv8sKOB0dHbrvvvu8PvsefPDBE/7uT18ImCfd9rXPP/9cLpdLf/zjH3XOOeeopqZGc+bMUWtrq5544gl/l3dKW7t2rfLz87VixQplZGSopKREOTk5qq2tVUxMjL/LCwibN2/W/PnzlZaWpu+//16//vWvNXHiRP39739XRESEv8sLSFu3btUf//hHXXzxxf4uJeB89913Gj9+vCZMmKB33nlHw4YN0/bt2zVkyBB/lxZwHnvsMS1fvlyrV6/WhRdeqL/97W/Ky8uTzWbTnXfe2a+18LXmk/D4449r+fLl+uqrr/xdyiktIyNDaWlpWrZsmaT/+12oxMRELVy4UAUFBX6uLjA1NzcrJiZGmzdv1o9+9CN/lxNwDhw4oEsvvVR/+MMf9NBDDyklJUUlJSX+LitgFBQU6K9//as+/PBDf5cS8H7yk58oNjZWdrvd03fjjTdq4MCBeumll/q1Fi4JnYSWlhYNHTrU32Wc0trb21VVVaXs7GxPX1BQkLKzs1VZWenHygJbS0uLJPHvt4/Mnz9fkydP9vp3jd7zxhtvaNy4cZo6dapiYmJ0ySWX6Nlnn/V3WQHp8ssvV3l5ub744gtJ0v/8z/+ooqJCV199db/XwiWhHvryyy/1zDPPcDnoJO3Zs0cdHR2KjY316o+NjdXnn3/up6oCm8vl0uLFizV+/HhddNFF/i4n4KxZs0bV1dXaunWrv0sJWF999ZWWL1+u/Px8/frXv9bWrVt15513KiQkRDNnzvR3eQGloKBATqdTY8aMkdVqVUdHhx5++GHdeuut/V7LaX+GpaCgQBaL5bjt///g3LlzpyZNmqSpU6dqzpw5fqoc6Jn58+erpqZGa9as8XcpAae+vl6LFi1SWVmZwsLC/F1OwHK5XLr00kv1yCOP6JJLLtHcuXM1Z84crVixwt+lBZz/+I//UFlZmV5++WVVV1dr9erVeuKJJ7R69ep+r+W0P8Ny99136/bbbz/umLPOOsvz965duzRhwgRdfvnlWrlyZR9XF/iio6NltVrV2Njo1d/Y2Ki4uDg/VRW4FixYoLfeekt/+ctfdOaZZ/q7nIBTVVWlpqYmXXrppZ6+jo4O/eUvf9GyZcvU1tYmq9XqxwoDw/Dhw3XBBRd49Z1//vl67bXX/FRR4LrnnntUUFCg3NxcSVJycrK++eYbFRcX9/vZrNM+sAwbNkzDhg3r1tidO3dqwoQJSk1N1apVqxQUdNqfoDppISEhSk1NVXl5uaZMmSLp//7fU3l5uRYsWODf4gKI2+3WwoUL9frrr+uDDz7QqFGj/F1SQLrqqqu0bds2r768vDyNGTNG9957L2Gll4wfP77T1/K/+OILjRw50k8VBa6DBw92+qyzWq1yuVz9XstpH1i6a+fOncrKytLIkSP1xBNPqLm52bONMwEnJz8/XzNnztS4ceOUnp6ukpIStba2Ki8vz9+lBYz58+fr5Zdf1p/+9CcNGjRIDQ0NkiSbzaaBAwf6ubrAMWjQoE73BUVERCgqKor7hXrRXXfdpcsvv1yPPPKIbr75ZjkcDq1cuZKz3n3g2muv1cMPP6wRI0bowgsv1Mcff6ylS5fqZz/7Wf8X40a3rFq1yi3pmA0n75lnnnGPGDHCHRIS4k5PT3d/9NFH/i4poHT1b3fVqlX+Li3gXXnlle5Fixb5u4yA8+abb7ovuugid2hoqHvMmDHulStX+rukgOR0Ot2LFi1yjxgxwh0WFuY+66yz3L/5zW/cbW1t/V4Lz2EBAADG4yYMAABgPAILAAAwHoEFAAAYj8ACAACMR2ABAADGI7AAAADjEVgAAIDxCCwAAMB4BBYAfpWVlaXFixd3uT0pKUklJSX9Vg8AM/FbQgCMtnXrVkVERPi7DAB+RmABYLTu/po6gMDGJSEAfvf9999rwYIFstlsio6O1n333aejP3P2/18Sslgseu6553TDDTcoPDxc5557rt544w0/VQ6gvxBYAPjd6tWrFRwcLIfDoaeeekpLly7Vc8891+X4+++/XzfffLM+/fRTXXPNNbr11lv17bff9mPFAPobgQWA3yUmJurJJ5/U6NGjdeutt2rhwoV68sknuxx/++2365ZbbtE555yjRx55RAcOHJDD4ejHigH0NwILAL+77LLLZLFYPK8zMzO1fft2dXR0HHP8xRdf7Pk7IiJCkZGRampq6vM6AfgPgQXAKWfAgAFery0Wi1wul5+qAdAfCCwA/G7Lli1erz/66COde+65slqtfqoIgGkILAD8rq6uTvn5+aqtrdUrr7yiZ555RosWLfJ3WQAMwnNYAPjdjBkzdOjQIaWnp8tqtWrRokWaO3euv8sCYBCL++jDDgAAAAzFJSEAAGA8AgsAADAegQUAABiPwAIAAIxHYAEAAMYjsAAAAOMRWAAAgPEILAAAwHgEFgAAYDwCCwAAMB6BBQAAGO//ATjXMUhtHAojAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "result.plot(feature_name=\"PAY_3\")" ] }, { "cell_type": "markdown", "id": "a493b092-6236-419f-906c-16d52c47674f", "metadata": {}, "source": [ "### Save Explainer Log and Data" ] }, { "cell_type": "code", "execution_count": 27, "id": "7c638a2c-6b01-4228-aa0f-93fd8dd7feab", "metadata": {}, "outputs": [], "source": [ "# save the explainer log\n", "result.log(path=\"./pd-ice-demo.log\")" ] }, { "cell_type": "code", "execution_count": 28, "id": "f5d91240-09ff-4893-b652-b0259a8f222a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "2023-03-12 23:27:53,358 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 BEGIN calculation\n", "2023-03-12 23:27:53,359 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 loading dataset\n", "2023-03-12 23:27:53,360 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 loaded dataset has 10000 rows and 25 columns\n", "2023-03-12 23:27:53,360 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 getting features list, importanceand metadata\n", "2023-03-12 23:27:53,361 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 all most important model features: ['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6']\n", "2023-03-12 23:27:53,362 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 features used by model: ['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6']\n", "2023-03-12 23:27:53,362 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885: calculating PD for features ['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4']\n", "2023-03-12 23:27:53,363 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 feature metadata: {'id': [], 'categorical': [], 'numeric': [], 'catnum': [], 'date': [], 'time': [], 'datetime': [], 'text': [], 'image': [], 'date-format': [], 'quantile-bin': {}}\n", "2023-03-12 23:27:53,363 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 1 frame strategy: True\n", "2023-03-12 23:27:53,364 INFO PD/ICE a30a4f57-9c78-4c5f-9c8e-85198b523c1c/745668cc-bbc8-42be-9b39-47487112a885 residual PD/ICE should NOT be calculated, but y has been specified - setting it None\n" ] } ], "source": [ "!head pd-ice-demo.log" ] }, { "cell_type": "code", "execution_count": 29, "id": "da4e2b28-96d7-440e-bfea-41cb694a52d4", "metadata": {}, "outputs": [], "source": [ "# save the explainer data\n", "result.zip(file_path=\"./pd-ice-demo-archive.zip\")" ] }, { "cell_type": "code", "execution_count": 30, "id": "c0540819-f896-481a-b470-b9d53a243b0a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Archive: pd-ice-demo-archive.zip\n", " Length Date Time Name\n", "--------- ---------- ----- ----\n", " 11434 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/result_descriptor.json\n", " 881024 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-8.jay\n", " 160272 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-3.jay\n", " 13658 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-pd-dai-model.json\n", " 1601936 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-1.jay\n", " 2349 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model.json\n", " 320440 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-5.jay\n", " 881024 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-9.jay\n", " 560688 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-4.jay\n", " 1601944 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-2.jay\n", " 881024 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-10.jay\n", " 80184 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/mli_dataset_y_hat.jay\n", " 1601784 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-6.jay\n", " 881024 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/work/h2o_sonar-ice-dai-model-7.jay\n", " 110 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html.meta\n", " 21396 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-2-class-0.png\n", " 12565 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-5-class-0.png\n", " 14256 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-1-class-0.png\n", " 12616 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-8-class-0.png\n", " 19038 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-3-class-0.png\n", " 4027 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/explanation.html\n", " 14358 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-0-class-0.png\n", " 12571 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-7-class-0.png\n", " 13577 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-6-class-0.png\n", " 18249 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-9-class-0.png\n", " 13688 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_html_fragment/text_html/pd-feature-4-class-0.png\n", " 165 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay.meta\n", " 881024 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_8_class_0.jay\n", " 881024 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_6_class_0.jay\n", " 1601936 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_0_class_0.jay\n", " 1601944 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_1_class_0.jay\n", " 1601784 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_5_class_0.jay\n", " 560688 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_3_class_0.jay\n", " 160272 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_2_class_0.jay\n", " 320440 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_4_class_0.jay\n", " 7096 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/explanation.json\n", " 881024 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_9_class_0.jay\n", " 80184 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/y_hat.jay\n", " 881024 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/local_individual_conditional_explanation/application_vnd_h2oai_json_datatable_jay/ice_feature_7_class_0.jay\n", " 151 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json.meta\n", " 924 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_3_class_0.json\n", " 2751 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_1_class_0.json\n", " 1412 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_9_class_0.json\n", " 2660 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_0_class_0.json\n", " 563 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_4_class_0.json\n", " 1414 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_6_class_0.json\n", " 2557 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_5_class_0.json\n", " 1413 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_8_class_0.json\n", " 1413 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_7_class_0.json\n", " 7156 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/explanation.json\n", " 322 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/global_partial_dependence/application_json/pd_feature_2_class_0.json\n", " 2 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/model_problems/problems_and_actions.json\n", " 5746 2023-03-12 23:27 explainer_h2o_sonar_explainers_pd_ice_explainer_PdIceExplainer_745668cc-bbc8-42be-9b39-47487112a885/log/explainer_run_745668cc-bbc8-42be-9b39-47487112a885.log\n", "--------- -------\n", " 19122325 53 files\n" ] } ], "source": [ "!unzip -l pd-ice-demo-archive.zip" ] }, { "cell_type": "code", "execution_count": null, "id": "584ad6ad-9989-46e4-9c65-aae4bff14df6", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "h2o-sonar", "language": "python", "name": "h2o-sonar" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }