Interpretation Parameters ========================= The following parameters can be specified when starting a new interpretation using the Python API: - ``dataset : Union[str, Path, ExplainableDataset, datatable.Frame, Any]`` - Dataset source: explainable dataset instance, datatable frame, string (path to CSV, .jay or any other file type supported by datatable), handle to a remote dataset hosted by Driverless AI or a dictionary (used to construct frame). - ``model : Union[str, Path, ExplainableModel, Any]`` - Path to model (str, Path), explainable model (``ExplainableModel``) , handle to a remote model hosted by Driverless AI or an instance of 3rd party model (like Scikit) to interpret. - ``target_col : str`` - Target column name - must be valid dataset column name. - ``explainers : Optional[List[Union[str, commons.ExplainerToRun]]]`` - Explainer IDs to run within the interpretation or ``ExplainerToRun`` instances with explainer parameters. In case of ``None`` or empty list are run all compatible explainers. - ``explainer_keywords: Optional[List[str]]`` - Run compatible explainers which have given keyword (AND). This setting is used *only* in case that ``explainers`` parameter is empty list (or ``None``). - ``validset : Optional[Union[src, Path, ExplainableDataset, datatable.Frame, Any]]`` - Optional validation dataset - sources might the same as in case of ``dataset``. - ``testset : Optional[Union[src, Path, ExplainableDataset, datatable.Frame, Any]]`` - Optional test dataset - sources might the same as in case of ``dataset``. - ``use_raw_features : bool`` - ``True`` to use original features, ``False`` to use transformed features. - ``used_features : Optional[List]`` - Optional parameter specifying features (dataset columns) used by the model. This parameter is used in case that an instance of the model (not ``ExplainableModel``) is provided by the user - therefore ``ExplainableModel``'s metadata are not available. - ``weight_col : str`` - Name of the weight column to be used by explainers. - ``prediction_col : str`` - Name of the predictions column - in case of 3rd party model (standalone MLI). - ``drop_cols : Optional[List]`` - List of the columns to drop from the interpretation i.e. columns names which should not be explained. - ``sample_num_rows : Optional[int]`` - Sample the ``dataset`` to given number of rows. By default, the dataset is sampled based on the RAM size (or to 25000 rows). Use ``0`` to disable sampling or use an integer value greater than ``0`` to sample to the specified number of rows. - ``sampler : Optional[DatasetSampler]`` Sampling method (implementation) to be used - see ``h2o_sonar.utils.sampling`` module (documentation) for available sampling methods. Use a sampler instance to use the specific sampling method. - ``container : Optional[Union[str, explainer_container.ExplainerContainer]]`` - Optional explainer container name (str) or container instance to be used to run the interpretation. - ``results_location : Optional[Union[str, pathlib.Path, Dict, Any]]`` - Where to store interpretation results - filesystem (path as string or ``Path``), memory (dictionary) or DB. If ``None``, then results are stored to the current directory. - ``persistence_type : persist.PersistenceType`` - Optional choice of the persistence type: file-system (default), in-memory or database. This option does not override persistence type in case that container is provided. - ``args_as_json_location : Optional[Union[str, pathlib.Path]]`` - Load all positional arguments and keyword arguments from JSon file. This is useful when input is generated, persisted, repeated and used from CLI (which doesn't support all the options). IMPORTANT: if this argument is specified, then all other function parameters are ignored. - ``upload_to : Union[str, config.ConnectionConfig]`` - Upload the interpretation report to the H2O GPT Enterprise in order to talk to the report. - ``log_level : int`` - Optional container and explainers log level. See also: - :ref:`h2o_sonar.interpret module`